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Numerical model of water infiltration into unsaturated medium

The one-dimensional model of vertical infiltration of water into an unsaturated soil layer is 
presented in the paper. The stationary boundary condition of constant soil surface watering 
is used for analysing the dynamics of transition from the unsaturated to saturated state 
of soil pores. The discretisation of the space and time domain of flow is conducted using 
the finite difference method. The resulting numerical algorithm is included in the program 
package MathCAD 14 to enable numerical analysis of filtration flow rate.
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Pregledni rad
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Numerički model infiltracije vode u nesaturiranu sredinu

U radu je prikazan numerički model vertikalne infiltracije vode u nesaturirani sloj tla. Da 
bi se spoznala dinamika prelaska iz nesaturiranog u saturirano stanje pora tla, u radu se 
koristi stacionarni rubni uvjet konstantnog natapanja površine tla. Diskretizacija prostorne i 
vremenske domene toka je provedena metodom konačnih razlika. U svrhu izrade numeričkih 
analiza filtracijskog toka, rezultirajući numerički algoritam je implementiran u programskom 
paketu MathCAD 14.
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Numerisches Modell der Wasserinfiltration in nicht saturiertes Milieu

In der Arbeit wird ein numerisches 1D-Modell der vertikalen Wasserinfiltration in 
eine nichtsaturierte Bodenschicht dargestellt. Zum Zwecke der Betrachtung der 
Transitionsdynamik vom nicht saturierten zum saturierten Zustand der Bodenporen 
wird in der Arbeit die feststehende Randbedingung einer konstanten Berieselung 
der Bodenoberfläche verwendet. Die Diskretisierung der Zeit- und Raumdomäne des 
Flusses geschieht mithilfe der Finite-Differenzen-Methode. Zum Zwecke der Erstellung 
einer numerischen Analyse des Filtrationsverlaufs wird der sich ergebende numerische 
Algorithmus in das Programmpaket MathCAD 14 importiert. 
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1. Introduction

Filtration flows can be operated through either saturated 
or unsaturated porous bodies, depending on the quantity 
of liquid in pores of an intergranular medium. In the water 
engineering practice, the role of liquid is most often assumed 
by water, while soil is the porous medium. At that, in order to 
conduct analyses of practical relevance, it is assumed, both 
in this paper and for other uses, that the flow of water in soil 
pores can be regarded "through" the continuum hypothesis, 
i.e. that the porosity of soil is such that its representative 
elementary volume can be defined [1].
If soil pores are completely filled with water, the contained 
water forms a continuous whole. In such circumstances, the 
disturbance in pressure field is transferred through space 
occupied with water. In other words, the difference in the levels 
of contained water will result in its movement. The description 
of such filtration flow is a part of elementary education of water 
engineers, and is based on the assumption that the value of 
turbulent motion can be neglected in relation to the value of the 
entire flow domain. The above justifies the use of the potential 
flow theory and, in this way, the modelling of filtration flow 
in saturated media is reduced to solving Laplace or Poisson 
differential equations. The choice of equation depends of 
whether the parameters of flow change during its analysis [2].
In unsaturated porous media, the flow of water is operated 
through the space that is either fully or partly filled with gas. 
For water flow through soil pores, the contained gas is always 
the air. The quantity of contained water must be quantified 
in order to define the rate at which soil pores are filled with 
water. For this purpose, we use the saturation degree q, which 
is defined by the ratio of water volume to a porous medium 
volume (1):

θ x y z t V
V

water

medium

, , ,( ) =   (1)

The theoretical saturation degree q can range from zero 
(corresponding to the totally dried out porous medium) to 
full saturation, qs, which defines the state of soil in which all 
pores are occupied with water. At that, it should be noted 
that the situation in which the soil is dried out to the level 
corresponding to q = 0 can not be encountered in practice. This 
is due to the fact that a certain quantity of water, adhering 
to soil particles, is always found in soul because of relatively 
strong molecular forces acting between soil particle walls 
and water. This quantity of water can significantly influence 
the rate at which pores are filled in an unsaturated medium, 
and must therefore be taken into account. The degree of 
saturation corresponding to the mentioned quantity of water 
is called the residual degree of saturation qr (3) and, in case of 
soil, it most often ranges from 0,001 to 0,02.
It can easily be understood that each saturation of a medium 
is preceded by a certain time of an unsaturated condition. 
Consequently, the importance of describing unsaturated 

filtration flows actually results from design specifications 
in which the rate of transition between the saturated and 
unsaturated condition of soil (and vice versa) has to be 
defined. A classical example of this is the water flow through 
embankment realized for flood protection purposes [2]. In 
addition, a practical significance of unsaturated flow modelling 
for the design of soil improvement projects can easily be 
noticed. At that, unlike the above mentioned case, such 
filtration flow is operated in the direction of the gravitational 
force, through geological formations of soil that are most often 
parallel to each other and, at the same time, perpendicular 
to the flow of water. These conditions are almost always 
encountered in relatively shallow paedologic horizons where 
attempts are made to ensure conditions appropriate for 
enabling supply of nutrients to roots of various agricultural 
crops. In this way, and unlike the mentioned case of flow 
through embankment (where a curved water face reveals the 
presence of vertical and horizontal components of speed), the 
process of initiation of irrigation of agricultural areas is most 
often described as one dimensional filtration flow.
A numerical model or redistribution of saturation in soil, 
resulting from constant irrigation of soil surface, is presented 
in the paper. The model results in a scalar function q(z,t) in 
which independent variables are: vertical coordinate of 
aquifer z, and time t that has elapsed since the irrigation 
initiation moment. In literature, this function is known as the 
redistribution curve [4].

2. Constitutive soil model

As a small velocity of flow vs is typical for filtration flow in soil, 
the contribution of kinetic energy to the total energy of water 
can be neglected from the engineering point of view. Therefore, 
the piezometric potential H can be defined as follows:

H z p
g

= +
ρ

 (2)

where z is the geodetic level of water particle as compared to 
a reference level, g is the gravity of earth, r is the pressure, 
and the p/rg ratio is the corresponding piezometric pressure 
head h. In these circumstances, the flow velocity vs in a porous 
element of the length dl can be related to the difference in 
potential dH at its edges. This dependence is defined by the 
Darcy’s law:

v k dH
dld s=  (3)

where vd is Darcy’s seepage velocity, and ks is the saturated 
coefficient of permeability in the dimension  [L/T]. Knowing 
the effective porosity of material, a linear link between vd and 
vs can be established [5].

When filtration in unsaturated media is described, it is also 
necessary to define functional dependence between the 
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filtration coefficient k (which is the measure of flow capacity 
in porous medium), and the quantity of water in pores of a 
material (q). In fact, if all pores are filled with water (q = qs), 
then the coefficient k becomes equal to the coefficient ks. 
For all other cases, i.e. for cases in which q < qs, nonlinear 
dependence between q and k must be defined. The model is 
based on the generalized Darcy’s law:

v k H
x y zd = ( )∇ ∇ =
∂
∂

∂
∂

∂
∂









θ ; , ,   (4)

and it defines the nonlinear functional dependence k(q). As 
the filtration coefficient k(q) can range from zero to ks, the 
normalisation is introduced as follows:

k k S k kr s rθ( ) = ( ) ≤ ≤; 0 1  (5)

where kr is the relative filtration coefficient dependant on the 
relative level of saturation S (6).

S Sr

s r

=
−
−

≤ ≤
θ θ
θ θ

; 0 1  (6)

The constitutive modelling of soil is now reduced to an 
appropriate definition of the function kr(S). For that purpose, 
van Genuchten recommends [9]:

k S S Sr
m

n

( ) = − −

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











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






1 1
1

2

 (7)

where m and n are dimensionless empirical soil parameters, 
conjugated to each other by the equation

m n za n= − ( ) >1 1 1  (8)

Although it is difficult to interpret the real physical significance 
of parameter n, this dimensionless value is often explained as 
a calibration parameter that is used to describe distribution of 
pore sizes in a granular medium. In fact, Guber et al. [6] show 
that n correlates with the volume proportion of a relatively 
small aggregate fraction. 

Figure 1.  Increase of coefficient kr with an increase in coefficient S 
(van Genuchten constitutive model)

The influence of parameter n on the capacity of filtration 
through a porous medium is shown in Figure 1 via several 
curves defined by equation (7), obtained for parameters n in 
the range from 2 to 10 (step ∆n=1).
It is significant to note that the constitutive model (7) is valid 
only in case when saturation of a porous medium progressively 
increases over time, or stagnates around an achieved value. 
In fact, experiments have shown that hysteresis occurs in a 
constitutive relationship (7) [10]. If at some point in a porous 
medium the coefficient S (6) starts to fall, the corresponding 
fall in coefficient filtration kr is not defined by the same 
constitutive law (7).
The modelling of hysteresis is needed in cases when the 
irrigation and drying of soil (or vice versa, or a cycle of these 
states) is expected within a time period under study. If soil 
irrigation is operated with a constant intensity, as is the case 
in this paper, the modelling of hysteresis is not required.

3. Model of flow through an unsaturated medium

The differential equation for filtration flow through unsaturated 
porous bodies is derived from the continuity equation written 
for a control volume within a porous medium. At that, if the 
space of such control volume can not be fully filled with 
water, the quantity of water present should be expressed by 
the level of saturation q (1). If there is no spring or sinking 
within the control volume V, the time change of the contained 
mass of water will be equal to the difference of mass flow 
through the area of the control volume A in the same period. 
In this way, if every differential element dA of the area A has a 
corresponding external normal n, the continuity equation can 
be written as follows [11]:

∂
∂

= ⋅( )∫ ∫t
dV v n dA

V A

θ ρ
 

 (9)

Using the Gauss’s theorem, the right side of the equation (9) 
assumes the following form

ρ ρ
  

v n dA v dV
A V

⋅( ) = ∇ ⋅∫ ∫  (10)

and, as the flow of liquid under study can rightly be considered 
as an incompressible flow, the equation (10) can be written as 
follows

∂
∂

= ∇
θ
t

v  (11)

Using the Darcy’s law (4), the preceding equation assumes the 
following form:

∂
∂

= ∇ ( )∇ 
θ

θ
t

k H  (12)

and, if the piezometric potential H is written in the form 
defined by the equation (2), it can be concluded that:

∂
∂
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The equation (13), known as the Richards equation, is the basic 
differential equation for flow of water through unsaturated 
porous media. As only several analytic solutions of Richards 
equations have so far been discovered, and as the solutions 
obtained are of small practical significance, the equation (13) 
is always solved numerically.
When defining the function k(q), the equation (13) contains 
two unknowns, i.e. the unknown area of saturation, q and the 
area of pressure height (head), h. In such circumstances the 
equation (13) can not be solved unambiguously. To counter 
this problem, new constitutive relationships are introduced 
and, in this way, the equation (13) can be rewritten in three 
different forms. The form presented in the paper (13) is known 
in literature as the m form of Richards equation, and is not 
appropriate for definition of boundary conditions for constant 
irrigation of soil surface [7]. For that reason, an another form 
of equation is introduced, via a differential relationship:

∂
∂

=
∂
∂

θ θ
t

d
dh

h
t

 (14)

by means of which (13) can be presented as follows  

∂
∂

=
∂
∂

( ) ∂
∂
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


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h
t
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d z

k h
zθ

θ 1  (15)

In equation (15), the term dh/dq  defines a unit change in 
pressure height of water that occurred due to simultaneous 
change of the degree of saturation q. In other words, the term 
dh/dq is the reciprocal value of the harmonisation of porous 
medium C(h). Consequently, (15) can be written as follows

∂
∂

=
( )

∂
∂

( ) ∂
∂

+



















h
t C h z

k h
z

1 1θ  (16)

where

C h d
dh

( ) = θ  (17)

As (17) describes a certain mechanical property of soil (that 
can be quantified in laboratory), the knowledge of the function 
C(h) will results in a lower number of unknowns in (15) and, in 
this way, an unequivocal solution to the infiltration problem 
is defined. The equation (16) is known in literature as the 
form h of the Richards equation [12]. In case the filtration 
flow is described by this equation, it should be noted that 
the boundary condition of the constant irrigation of soil 
surface should be defined in form of a pressure head h. For 
that purpose, the function h(q) must be known. At that, the 
boundary condition for constant irrigation of soil surface can 
be defined in a simpler (more intuitive) way by specifying the 
degree of saturation as a boundary condition. In fact, in the 
time period t > t0 the boundary condition q = qs at the soil 
surface will define the state of constant irrigation. In order to 
obtain the form of equation (13) that would be appropriate for 
this purpose, the following equivalence is introduced

∂
∂

=
∂
∂

=
( )

∂
∂

h
z

dh
d z C h zθ

θ θ1  (18)

by means of which the form h of the Richards equation (16) 
can be rewritten as

∂
∂

=
∂
∂

( ) ( )
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By arranging the equation (19) we obtain

∂
∂

=
∂
∂
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( )
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+ ( )
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
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
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where the ratio k(q)/C(h) is most often interpreted as capillary 
diffusion D (21):

D
k
C h

θ
θ( ) = ( )
( )  (21)

As the capillary diffusion D is explicitly dependent on the 
degree of saturation of porous medium q [13], the equation 
(20) can be reduced to the following form

∂
∂

=
∂
∂

( ) ∂
∂









 +

∂ ( )
∂

θ
θ

θ θ
t z

D
z

k
z

  (22)

Once constitutive relationships (7) and (21) are defined, 
the equation (22) can be solved according to q. At that, it 
should be noted that in this case boundary conditions are 
also defined by specifying the value q. In other words, this 
last form of Richards equation (13) is the most favourable 
for modelling the time-and-space-related changes in the 
degree of saturation at constant irrigation of soil surface. It 
should be noted that the equation (17) defines the derivative 
at a point of the soil retention curve for a realized degree of 
saturation q. When approaching the full degree of saturation 
qs, the ratio (17) approaches zero. At the moment when the 
complete soil saturation is realized, the C(h) will be equal to 
zero. As shown in (21), the mentioned tendency will greatly 
influence the capillary diffusion D. Furthermore, at the 
moment when soil pores are completely filled with water, the 
diffusion becomes indeterminate (division with zero). During 
numerical calculation of the form q of the Richards equation 
(22), this problem is noted much earlier, i.e. before the full soil 
saturation qs is achieved. For that reason, and because the 
boundary condition of constant irrigation (defined with qs) is 
considered in the paper, the capillary diffusion D is adopted 
as a constant mechanical parameter [14]. In this way, the 
capillary diffusion D from (22) can be placed in front of the 
differential operator, and hence the following equivalence is 
established

∂
∂

=
∂
∂

∂
∂

+ ( )









θ θ
θ

t
D
z z

k   (23)

The numerical algorithm, implemented using a high-level 
programming language MathCAD 14, is used for conducting 
numerical analyses related to the infiltration of water into 
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a soil layer, and is based on a numerical approximation of 
solution obtained by equation (23).

4. Discretisation of basic process equation

Spatial discretisation of the flow domain is conducted from 
the soil surface, where z = 0 (Figure 2), and is operated until 
a predefined depth of the water bearing layer is reached. 
The spatial step Dz is adopted as constant. In this way, the 
spatial disposition of interesting variables is defined by the 
coordinate i, and their temporal position is defined by the 
coordinate j. 

Figure 2.  a) Soil profile and b) example of space discretisation between 
the soil surface and a permeable paedologic horizon

According to signs that have been introduced, the numerical 
approximation of partial derivative of a physical value ▪ based 
on spatial coordinate z, assumes the following form:

∂
∂

≈
−+" " "

z z
i
j

i
j

1

∆
 (24)

a partial derivative of the same value in time becomes

∂
∂

≈
−+" " "

t t
i
j

i
j1

∆
 (25)

It should be noted that the numerical discretisation of 
equation (22) also requires approximation of the second 
derivative of the degree of saturation q. In fact, the right hand 
side of the equation (22) contains the term

∂
∂

∂
∂



















z z
i

θ  (28)

Using the approximation of the spatial derivative (24), the 
second derivative of the degree of saturation q can be 
analogously approximated as follows:

1 1 1

∆ ∆ ∆z z z
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 (27)

The numerical approximation will also require an 
approximation of the spatial derivative of the function k(q) 
in (22). At that, as k(q) can be interpreted as an indicator of 
water permeability between the two neighbouring layers of 
soil, the numerical approximation is most often conducted in 
a way that is somewhat different from the one defined with 
(24). In other words, in order to model the water permeability 
between two neighbouring layers near the discretisation point 
i, the filtration coefficientk(q) is defined at a half of the spatial 
increment Dz, and this as an average of the two neighbouring 
values k(q)i-1 and (q)i+1. The spatial change of the value k(q) at 
point i is defined using:

k
k k
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j i
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and so the derivative ∂k(qs)/∂z in (22) is approximated as 
follows:
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≈
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      (30)

If the studied soil segment is inhomogeneous, the numerical 
approximation of the equation (22) is conducted by attributing 
an appropriate value ks to each individual node i. Unlike the 
above mentioned case, the anisotropy modelling is far from 
trivial [15]. As one-dimensional vertical flow is considered in 
the paper, the anisotropy modelling is unnecessary (as there 
is only one component of velocity).
Using approximations of derivatives (24, 25, 27, 30), the equation 
(22) can be discretised and, after arrangement of terms, the 
following summarized numerical algorithm is defined:
θ θ

θ θ θ θ θ

i
j

i
j

i
j

i
j

i
j

i

j

i

t

D
z

z

k k

+

+ − + −

−
=

− +( )
+









 −

1

1 1
1
2

1
2

2

∆

∆
∆

jj

z











∆

     (31)

For the known situation in time j, in each point i, the equation 
(31) defines q in the following time interval j+1. At that, as q j+1 
is the only unknown in (31), the equation system obtained 
is explicit in time, which makes it highly attractive for use in 
calculation. Just like every other explicit numerical algorithm, 
this one is also subject to numerical stability criteria. In other 
words, for the selected spatial step Dz, the time step Dt must 
meet the following inequality:

∆
∆

t
z
D

≤
( )

<
2

1δ δ;  (32)

in which d is the stabilization parameter.
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5. Numerical analysis

The numerical algorithm presented in the paper was 
used for the analysis of surface infiltration of water 
into a homogeneous soil layer. The equidistant spatial 
discretisation with 200 points was carried out from the 
ground surface at the level z=0, and was continued all the 
way down to z = -1m. The redistribution of saturations was 
modelled within one hour. In order to present the progress 
of saturation, the diagrams contain several q curves, and this 
for time intervals j∆t, where j = 1..10. The numerical analysis 
was made for soil with the following properties: ks=1.5×10-5 m/s, 
qr=0.06 cm3/cm3, qs=0.4 cm3/cm3, D = 5×10-5 m2/s and n = 
2. This is not a random selection of soil parameters. In fact, 
the parameters were selected with the purpose of defining 
soil that can realistically be categorized as loam [16] and, 
considering the quantity of vegetable soil and nutrients, 
loam is considered to be highly favourable for growing 
various agricultural crops. At that, in order to analyze 
influence of the coefficient ks on the development of the 
area q, the initial value ks was increased on two occasions 
by ∆ks=2.25×10-5 m/s (the factor of increase amounts to 
2.5). While not changing other constitutive parameters of 
soil, the tested range of coefficient ks can be interpreted 

as an attempt to describe the occurrence of crack in soil 
due to a longer period of drought. In fact, in this case the 
development of smaller, but also greater, cracks in soil will 
influence an increase in soil permeability. On the other hand, 
as the process of infiltration is here modelled in the scope 
of the continuum hypothesis, this will be reflected on the 
macroscopic level only through an increase in the coefficient 
ks. Furthermore, to define the constant irrigation of soil 
surface, the Dirichlet boundary condition was defined in 
the node i=1 with q =qs=0.4 cm3/cm3. As it was agreed that 
the spatial discretisation ends at the permeable soil limit, 
the permeability condition qn= qn-1 (zero gradient boundary 
condition) was defined in the final node. Numerical analysis 
results are presented in Figure 3. In all examples, the vertical 
line stands for the initial condition q = qr = 0.06 cm3/cm3, i.e. 
for the area q at the moment t0.
The absorption capability of the porous medium increases 
with an increase in the value ks. In fact, as shown in figure 3c, 
the redistribution curve is almost vertical in time 10∆t, which 
is an indication that, at that time, all soil pores are either 
saturated or are close to full saturation. Unlike the above 
mentioned (i.e. when ks is smaller), the Figure 3a shows the 
curve q (z, 10∆t), which reaches saturation of only q = 0.14 for 
the same time at the bottom of the domain.

Figure 3. Redistribution curves: a) ks=1.5×10-5 m/s; b) ks=3.75×10-5 m/s; c) ks=7.5×10-5 m/s

Figure 4. Redistribution curves for: a) D=3.5×10-5 m2/s; b) D=2.0×10-5 m2/s; c) D=5.0×10-6 m2/s
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It is also interesting to consider the water propagation 
mechanism in case when the capillary diffusion D is smaller 
than the previously adopted one. The numerical analysis 
was conducted for three different values of D in order to 
take into account the influence of D on the development of 
the area q(z,t). In addition to capillary diffusion D, which was 
reduced on three successive occasions for the increment of 
∆D=1.5×10-5 m2/s, all other parameters remain constant 
and correspond to the last case of the previously presented 
numerical analysis (Figure 3c). Results of numerical analysis 
conducted for cases when the capillary diffusion D assumes 
the value: 2.5×10-6, 1.25×10-5 i 2.5×10-5 m2/s (Figure 4.) are 
presented below.
As shown in Figure 4c, the segment of redistribution curve 
q(z,t) in a relatively thin layer of flow domain is shaped almost 
horizontally for a relatively low value of the capillary diffusion 
D. In other words, the horizontal limit between the saturated 
and unsaturated medium (water front) is clearly shown. It 
should also be noted that the redistribution curve is defined 
only by its translation in time, in the case shown in Figure 4c. 
In fact, the shape of redistribution curve does not change in 
time for the adopted flow parameters, i.e. only the position of 
water front actually changes. On the other hand, by increasing 
the capillary diffusion D, Figures 4a and 4b show contribution 
of capillary diffusion D to the change in shape of redistribution 
curve, especially in later time intervals.
The numerical model also points to a negligible influence 
of the value ks on the change in shape and position of the 
redistribution curve in the time interval in which the water 
infiltration starts. For the adopted flow parameters, this time 
interval amounts to about 10 min (~2∆t). In fact, as shown 
in Figure 3, differences between all redistribution curves 
q(z,∆t) are negligible, i.e. they are almost unnoticeable in 
time ∆t, and this regardless of the size of the value ks. The 
differences between curves start to be notable only after the 
time of about 2∆t has elapsed (Figure 3). This development of 
distribution curve is the consequence of the constitutive soil 
model adopted (7). In fact, the change in filtration coefficient 
k is almost negligible for small values of the degree of 
saturation q (Figure 1). Considerable and sudden increase in 
the filtration coefficient k is registered only after a certain 

degree of saturation q has been achieved. The coefficient k 
development rate depends on the pore distribution parameter 
n (7), i.e. on statistical distribution of pore sizes [6].

6. Conclusion

A numerical model of vertical infiltration of water into an 
unsaturated porous soil medium is presented in the paper. 
The boundary condition of constant soil surface irrigation is 
used to define and analyse the rate of transition from the 
unsaturated into saturated condition of soil pores. The spatial 
and temporal changes in the area q(z,t) are defined by Richards 
equation for the zone between the water irrigation area and 
the bottom permeable limit of the flow domain. The spatial 
and temporal discretisation, based on the finite difference 
method, is conducted in order to find an approximate 
solution to the Richards equation. The explicit algorithm 
presented is implemented in the program package MathCAD 
14 for purposes of the numerical flow analysis. The results 
obtained show changes in the area q(z,t) in the period since 
the initial state of soil saturation, defined by residual degree 
of saturation qr. The influence of the saturated filtration 
coefficient ks on the soil pore filing rate is analysed for the 
defined initial and boundary conditions. The numerical model 
also shows that the influence of the coefficient ks becomes 
important only after a certain time has elapsed since the 
moment t0 in which irrigation of the soil surface starts. The 
influence of the capillary diffusion D, for the position and shape 
of redistribution curve in soil, is analysed in the same way. For 
that purpose, a case is presented in which the diffusion D is 
sufficiently small to enable presentation of the limit between 
the saturated and unsaturated part of soil with a horizontal 
line. In other words, an interesting case of water infiltration is 
analysed (case characterized with two degrees of saturation 
only). The initial degree of saturation qr (residual degree of 
saturation), and full degree of saturation qs (defined at the 
ground surface), can be differentiated in this example. As 
shown in Figure 4c, the values for the flow conditions adopted 
are separated by a clear boundary. On the other hand, the 
influence of an additional increase in the capillary diffusion D 
on the progress of the water front is also presented.
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