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Assessing ANFIS accuracy in estimation of suspended sediments

e Capabilities offered by an adaptive neuro-fuzzy inference system (ANFIS) in the
‘}:{. estimation of daily sediment loads at four stations in the USA, are explored in the
paper. For this purpose, models with various input combinations of data sets were
Assist.Prof. Seyed Morteza Seyedian, PhD. CE. constructed to enable identification of the best possible structure. The results show
University of Gonbad-Kavous, Iran that the best ANFIS model exhibits better performance compared to the SRC model, in
Department of Watershed Management terms of the RMSE, MBE and R2 values. The results also indicate that the ANFIS model
s.m.seyedian@gmail.com can be applied to facilitate modelling of nonlinear dynamics of complex systems.
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Prethodno priopcenje

Seved Morteza Seyedian, Hamed Rouhani

i Procjena toc¢nosti ANFIS-a u prognoziranju lebdeceg nanosa

Assist.Prof. Hamed Rouhani, PhD. CE. U radu se istrazuju mogucnosti koje pruza prilagodljivi sustav neizrazitog zakljucivanja
University of Gonbad-Kavous, Iran zasnovanog na neuronskoj mrezi (ANFIS) u predvidanju dnevnih koli¢ina lebdeceg nanosa
Department of Watershed Management koje je obavljeno na cetiri stanice u SAD-u. U tu su svrhu izradeni modeli s razlicitim
rouhani.hamed@yahoo.com kombinacijama ulaznih podataka kao osnova za odredivanje najbolje moguce strukture.

Dobiveni rezultati pokazuju da se najbolji model ANFIS ponasa bolje od modela SRC s
obzirom na dobivene vrijednosti RMSE, MBE i R2. Rezultati takoder pokazuju da se pomocu
modela ANFIS moZe pojednostavniti modeliranje nelinearne dinamike slozenih sustava.

Klju€ne rijeci:

ANFIS, histereza, koncentracija nanosa, nanos

Vorherige Mitteilung
Seyed Morteza Seyedian, Hamed Rouhani

Genauigkeitsabschatzung des ANFIS bei der Prognose von
Schwebablagerungen

In dieser Arbeit werden die Moglichkeiten veranderlicher Systeme indirekter
Schlussfolgerungen aufgrund neuronaler Netze (ANFIS) bei der Vorhersage taglicher
Mengen von Schwebablagerungen untersucht, die an vier Stationen in den USA
durchgefihrt wurden. Dazu wurden vier Modelle mit verschiedenen Kombinationen
von Eingangsparametern als Grundlage zur Ermittlung der optimalen Struktur erstellt.
Die Resultate zeigen, dass sich in Bezug auf die gegebenen Werte RMSE, MBE und R2
das beste ANFIS Modell besser als das SRC Modell verhalt. AuRerdem geht aus den
Resultaten hervor, dass sich aufgrund des ANFIS Modells die Modellierung komplexer
nichtlinearer dynamischer Systeme vereinfachen lasst.

Schllisselworter:

ANFIS, Hysterese, Konzentration von Ablagerungen, Ablagerungen
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1. Introduction

Knowledge of the quantity, quality and dynamics of sediments
is essential for designing dams, sediment transport,
prevention of pollution in lakes and rivers, fish habitats,
watershed management, etc. Direct measurement of
suspension load is mostreliable, butitis expensive and cannot
be conducted for as many streams as the measurement of
water discharge [1]. On the other hand, most of the sediment
transport equations are derived from detailed information
about the flow and sediment characteristics. Traditionally,
the influence of short-term dynamics of storm event on
sediment loading is characterized by rating curves to predict
the suspended sediment concentration (SSC) or suspended
sediment load (SSL) according to stream discharge (Q) in a
certain region [1-10]. A rating curve has the following form,
according (11,12, 3]:

Q. =a-@ (1)

where Q_is the SSL (ton/day) or (gr/1), Q (m3/s) is the stream
flow, and a and b are the rating coefficient and rating
exponent, respectively. Due to high variability in water
discharge and SSC values [13], this relationship is normally
not homogenous in time, neither within nor between events,
which causes a large scatter of SSC-discharge data pairs.
On the other hand, the delivery of suspended sediments
and water may result in hysteresis effects, i.e. different
sediment concentrations for discharges of equivalent
magnitude on the rising and falling limbs of a hydrograph
[14-16].

Therefore, the SSC-discharge modelling is still a challenging
task due to its nonlinear and hysteretic behaviour. According
to [13], the form of the rating curve can be attributed to the
dominant sediment source, dominant channel pattern and,
to a certain extent, to the cross-section position within the
river basin. Due to a large number of (unknown) parameters
involved in this phenomenon, sophisticated computer
modelling and simulation are required to predict the values
accurately, and to enable finding nonlinear relations between
variables. Recently, there has been a rise in interest about
the use of soft computing methodologies, especially the
artificial neural network (ANN) and the adaptive neuro fuzzy
inference system (ANFIS), to model this phenomenon and
enable finding nonlinear relations between variables.

In spite of suitable flexibility of ANN in modelling hydrologic
time series, it may not be appropriate in situations when
signal fluctuations are highly non-stationary and a physical
hydrologic process operates under a large range of scales
varying from one day to several decades. In such an uncertain
situation, the Fuzzy Inference System (FIS) may be employed
for estimating uncertainties in real situations. The ANN and
FIS hybrid is one of the focal points of research, as it can

make use of the advantages of both ANN and FIS and hence
the acronym ANFIS.

Several studies about the application of ANFIS in the
prediction of sediment have been conducted so far. The proof
of concept for the application of ANFIS has been investigated
in a number of research papers, and it was established that
it performs comparatively well with respect to conventional
sediment rating curve models, and that it takes into account
the non-linear complex phenomenon [17-19]. Kisi and Shiri
[20] compared the Genetic Programming (GP) technique with
the ANFIS, ANN and SVM (Support Vector Machine) models
for estimating the daily SSL at two stations in the Cumberland
River in the U.S. The comparison results indicate that the
GP is superior to the ANFIS, ANN and SVM models. Kisi [21]
modelled the SSC using the ANFIS and ANN methods and
found that the ANFIS model is superior to the ANN. Another
study [22] highlights the advantage of ANFIS over ANN and
SRC (sediment rating curve) models in the monthly suspended
sediment prediction at Kuylus and Salur Koprusu stations in
Kizilirmak Basin in Turkey. Aytek and Kisi [23] applied GP to
suspended sediment transport, and found that it performs
better than the conventional rating curve and multi-linear
regression techniques. Rajaee et al. [24] applied the ANFIS,
SRC, and ANN to estimate daily SSC, and they showed that
the ANFIS works better compared to the others, and that it
can satisfactorily simulate hysteresis phenomena. Yang et al.
[25] examined the total sediment transport prediction using
the ANN model. The average flow velocity, water surface
slopes, average flow depth, and median particle diameter,
were used to train the ANN. In another study, Rajaee [26]
investigated the combined use of the ANN and Wavelet
(WANN) for daily SSL prediction in rivers. Results showed
that the WANN model simulated the hysteresis event better
than other models. Furthermore, the ANN model simulated
hysteresis in only one event, while the SRC model was unable
to simulate the hysteresis phenomenon. Jain [27] presented
a SVR (support vector regression) application to model the
river discharge and sediment concentration rating relations,
and compared the results with those derived from the ANN
model. It was established that the SVR approach is better
when compared to the ANN.

The reviewed literature shows that, despite many
investigations on the discharge-sediment relationship using
intelligent techniques, most efforts have been focused on
the development of optimum ANFIS model parameters
in order to estimate the suspended sediment, and then
to verify the model efficiently with regard to peak SSL or
hysteresis. The aim of this research was to characterize the
effect of different input data on the SSL estimation accuracy.
In particular, we explored the best combination of input data
for the estimation of hysteretic behaviour and sediment load
peaks using appropriate ANFIS structures at four stream-
gauging stations in the USA.
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2. Data and method
2.1. ANFIS

ANFIS is a multi-layer adaptive network-based fuzzy inference
system [29]. An adaptive neural network is a network
structure consisting of a number of nodes connected through
directional links. Each node is characterized by a function with
fixed or adjustable parameters. Learning or training phase of a
neural network is a process aimed at determining parameter
values to sufficiently fit the training data. The basic learning
rule is the well-known back-propagation method that seeks
to minimize some measures of error, usually sum of squared
differences between network’s outputs and desired outputs
[30]. The benefit of the ANFIS architecture comes from
combining the fuzzy decision-making capability and the ANN
learning capability to represent the dynamics of a non-linear
system. ANFIS can be constructed as a five layer MLP network
illustrated in Figure 1, with the following five layer operations:

Layer 1 Layer 2 Layer 3

Layer 4 Layer 5

A

Figure 1. A typical ANFIS structure

Layer (1): X and Y are two typical input values fed at two input
nodes, which will then transform these values to
membership functions.

Oi1:/uAi(X) i=1,2

(2)

O' =ty » (y) =34

where X (or Y) is input and Hy, (ili yBi’z) is the fuzzy set associated
with this node.

Layer (2): Every node in this layer multiplies the incoming
signals. The output 0 of the node /can be computed
as:

OF =W, = s () g, (y)i=1,2 G)

Layer (3): Such products or firing strengths are then averaged:

w.

0% =w. =

i i

L —i=1,2 (&)
W, + W,

Layer (&): The node /in this layer calculates the contribution of
f rule in the model output function, which is defined
based on the first-order method as [31]:

O =wf =w,(pX+qY+r)i=1,2 (5)

where w is the output of layer 3 and p, g, r,are the parameter
sets.

Layer (5): The single node of this layer calculates the weighted
global output of the system as follows:

O’ =wf=-——0o (6)

Additional details about the ANFIS and hybrid algorithm can be
foundin[32].

2.2. Data and statistical analysis

Four river gauging stations operated by the US Geological
Survey (USGS) provided time series data of discharge and
sediment load that were used in this research. These stations
are: 1100000 (Merrimack river at Lowell, New Hampshire),
1491000 (Choptankriver near Greensboro, Maryland),
1570500 (Susquehanna river at Harrisburg, Pennsylvania),
and 1573000 (Swatara Creek at Harper Tavern, Pennsylvania),

Table 1. River monitoring stations and characteristics of their drainage areas

Hydrological . . R . . Drainage area Date of the data
station Station ID Station description Latitude Longitude [km?] day/month/year
Station1 | 1100000 = Merrimack river at lowell | 42°38%5" | 71°17'56" 12005 25/05/1967 - 28/09/1972
Station2 | 1491000 Choptank Near 38°59'50" | 75°47'10" 292,67 02/10/1980 - 30/09/1989
Greensboro
Station3 | 1570500 | usduehannariverat 40°15'17" | 76°53'11" 62419 01/01/1976 - 30/09/1979
harrisburg
. Swatara creek at Harper oo v oo 1mn 08/05/1959 - 30/09/1960
Station4 | 1573000 S 40°24'09 76°34'39 872.83 0101906 31121908
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Table 2. Statistical characteristics of the observed flow (m3/s) and SSL (ton/day)

Station ID Data type X i mean X o Sx Csx

Flow 9.54 220.09 1210 216.90 0.98

! Sediment 1.80 579.02 24500 1912.76 3.30

Flow 0.07 3.39 65.7 5.17 1.52

£ : Sediment 0.02 5.04 351 19.35 3.84
g Flow 138 1203.78 11600 1313.61 1.09
’ Sediment 57 8348.11 287000 26372.36 3.16

Flow 0.93 19.42 306 29.81 1.54

“ Sediment 0 232.50 18100 1108.65 4.77

Flow 12.5 208.66 1210 219.22 1.05

! Sediment 7 595.02 26300 2025.60 3.40

Flow 0.12 3.59 63,1 5.41 1.51

- : Sediment 0.02 6.08 406 25.22 4.15
E Flow 136 1165.11 9800 1284.24 1.10
’ Sediment 66 6911.12 135000 1744214 2.52

Flow 1.36 17.86 228 26.84 1.50

“ Sediment 0 174.71 7440 714.81 4.09

and are herein referred to as the Station 1, Station 2, Station 3,
and Station 4, respectively. The gauging stations, geographic
coordinates, and operation periods, are presented in Table 1.
Table 2 summarizes statistical characteristics of the observed
discharge and SSL in training and testing sets, namely the
minimum (x ), maximum (x__), mean (x__ ), standard
deviation (Sx,), and coefficient of variation (Csx). The difference
between the SSL and discharge data is identifiable. According
to Table 2 C_ for SSL data is almost three times higher than
the discharge data.

2.3. Evaluation criteria

The performance of the models was evaluated using
quantitative statistical metrics including the root mean
square errors (RMSE), mean absolute errors (MAE), and
coefficient of determination (R?) statistics. R? is a statistic
that will give some information about the goodness of fit of
a model. In regression, the R? coefficient of determination
is a statistical measure of how well the regression line
approximates measured data. Moreover, the R* tends to
reflect the proportion of the total variance in the observed
data that can be explained by the model [33]. Different types
of information about predictive capabilities of the model
are measured through RMSE and MAE and also its variant
in form of mean bias error (MBE) that includes the sign of
deviation. The RMSE sizes the goodness of fit as related
to high discharge coefficient values, whereas the MBE
measures a more balanced perspective of the goodness of fit
at moderate discharge coefficients [34]:

(7)

(8)

RZ — i=1 (9)

where nis the number of data set, A and B are the observed and
estimated values, respectively, Aand B are mean values of
observed and estimated values, respectively.

2.4. Development of ANFIS model

Literature reviews on ANFIS show no specific rules for the
subdivision of test and train data. However, from the overall
input/output data, 75 % are normally used for the training
procedure and the rest 25 % for model testing. The test and
train data were chosen randomly in this research. One of the
most important steps in the development of a satisfactory
estimation model is the selection of input variables, which
determines the structure of the ANFIS model, and affects the
weighted coefficient and the results of the model [35]. Different
combinations of antecedent values of daily river flows and daily
SSL or SSC were used for constructing an appropriate input
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Table 3. Summary of final architecture of ANFIS models

Model input Station ID Input MF Output MF Number of input MF Number of fuzzy rules
1 “Gauss2 Linear 3 3
2 OTri Linear 4 A
Q
! 3 “Gbell Constant 4 4
4 ‘psig Linear 3 3
1 Pi Constant 33 9
q 2 Gauss2 Constant L4 13
T
! 3 Gbell Constant 33 8
4 Gbell linear L4 15
1 Pi Constant 22 4
2 Gauss2 Linear 22 4
Q. Q.
3 Gbell Constant L4 16
4 ftarp Constant 33 9
1 Tri Linear 333 23
2 Gauss Constant 333 22
Q.Q., T
3 Gbell Constant 333 8
4 Gbell Constant 333 12
1 Tri Constant 333 16
2 Gbell Constant 333 27
Qt’ QH’ SSLM .
3 Tri Constant 333 15
4 Gauss2 Constant 333 23
@ Membership function based on a combination of two Gaussian functions, ® Triangular membership function
“ Generalized bell-shaped membership function, ¢ Product of two sigmoid membership functions
¢ 1t shape membership function, " Trapezoidal membership function, MF - membership function

structure. Generally, two types of time series models can be
developed: univariate and multivariate. Consequently, ANFIS
was designed to model univariate and multivariate time series
in which the univariate time series models used current and past
discharge data alone, while the multivariate time series models
used discharge data along with sediment load data. Therefore,
five different ANFIS models were established to estimate SSL
(SSC) for four downstream stations in the river system with the
corresponding input vectors as follow:

(1) Q

(2 Q,T

(3) Q.Q.,

(4) Q. Q.

(5) Q.Q,, SSL,,or(SSC, )

Where Q, is the flow at the t-th day, Q _, is the flow at the
t-1%* day, SSL, , or SSC_, the suspended sediment load and
concentration at the t-1%t day, and T stands for centralized time
for dates.

A program code including fuzzy toolbox was written in the
MATLAB software for ANFIS simulation. Different ANFIS
architectures were checked using this code, and an appropriate
model structure was obtained. For all models, the training was
performed using an optimum hybrid method. This method is a
combination of backpropagation and least squares methods
that are used to train the network so as to minimize the error
between the ANFIS output and desired response (SSL or SSC).
Various types of input membership functions (triangular,
trapezoidal, Gaussian and Gumbel membership functions)
were tried for each ANFIS model. The training stage was
carried out using the trial and error procedure by utilizing
various estimator structures to determine an optimum set of
fuzzy rules. The summary of optimum values is given in Table
3. It can be seen quite clearly that the best entry functions in
different stations and in different entry models were not the
same and that, in most models, the constant membership
function performed better than the linear one. Three or four
membership functions for ANFIS models were considered
sufficient for SSL modelling.

GRADEVINAR 67 (2015) 12,1165-1176
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3. Results and discussion

Statistical values of the best input combination of the training
and test sets for ANFIS models at each station are presented
in Table 4. The R? values for the ANFIS training model ranged
from 0.80 to 0.87 for the four stations for input M1 model
when only the current day flow was used for SSL predictions.
Similarly, the R? ranged from 0.87 to 0.94 when the current
day flow and centralized time for dates derived from the
aforementioned analyses were used for the input M2 model at
the training stage. The greatest R* were obtained at Gauging
Station 4, and the values from 0.87 to 0.94 were obtained for
M1 and M2 models on the training data set. When antecedent
flow was also used in the input matrix, the range of R? values
increased for all four gauging stations as in the M3 model
and M4 model where R? ranged from 0.90-0.94 and 0.94-
0.96, respectively. In M4 model, higher MBE and RMSE values
indicate higher error, which shows poorer agreement of the
modelled and observed values. Of the five ANFIS models,
M5 model performed slightly better than the others in three
stations out of four stations, and it resulted in the highest
coefficients of determination (0.92-0.96). In addition, the
RMSE and MBE values of M5 model for the station data set are
lower than those of other models. The M5 model offered the
lowest MBE values compared to other models in all stations.
In Table 4, the best input combination at the training stage,

in all stations except for Station 1, are sorted from lowest
to highest as M1 model to M5 model; while the highest R?
were obtained in Station 1 by M4 model. Comparison of input
parameters revealed that the parameter T was almost non-
effective at Station 4 while in other stations this parameter
improved the results in the second and fourth combination,
and had the most accurate estimation.

During the testing phase, all developed models were used to
conduct a SSL (SSC) forecast using an independent training
dataset. As can be seen quite clearly in Table 4, unlike the
results obtained at the training stage, the M2 model generally
had better results compared to M3 model at the test stage at all
stations, except at Station 4. In addition, the best model defined
at the training phase (M5 model) consistently outperformed the
others during testing stages at all stations except at Station
1. Also, the parameter T improved the accuracy of predictions
at the training stage for all stations, except for Station 4. This
might be due to the fact that there was a 16-year gap between
the data collected at this gauging Station, and that there was
an extreme increase in T parameter values in the second
part of data compared to the first part. The ANFIS technique
could not adequately simulate these alterations, and so this
parameter was not allowed to influence the values predicted at
this station. Wang and Linker [36] used non-linear regression
to show that parameter T could represent the effect of long-
term changes on sediment load, but ANFIS was not capable

Table 4.Performance of SRC and ANFIS models simulating SSL at various gauging stations (RMSE and MBE= ton/day)

Station
Analizirani modeli Train Test
Model Inputs Vrsta StatiStiEk_i_ 1 2 3 4 1 2 3 4
pokazatelji
R? 0,84 0.83 0.78 0.73 0.80 0.80 0.80 0.72
SRC RMSE 774 8.0 8465 580 923 11.9 6850 413
MBE -91.7 0.5 368 42 -84.2 -0.1 1679 60
M e R? 0.87 0.85 0.80 0.88 0.88 0.84 0.80 0.73
ANFIS RMSE 693 7.4 11714 387 723 10.8 10158 454
MBE 0.0 0.0 120 0 -29.1 -0.7 793 21
R? 0.94 0.91 0.87 0.91 0.90 0.91 0.83 0.72
M2 QT ANFIS RMSE 477 5.8 9503 337 641 9.5 7287 430
MBE 0.3 0.0 284 3 -10.8 -1.1 -10 5
R? 0.90 0.92 0.90 0.94 0.86 0.84 0.83 0.83
M3 Q.q,, ANFIS RMSE 616 5.4 8198 267 750 10.1 8133 315
MBE 0.0 0.8 81 8 -235 -0.1 170 11
R? 0.96 0.94 0.94 0.94 0.87 0.85 0.85 0.79
M4 Q.Q. T ANFIS RMSE 401 4.8 6217 271 739 9.9 6945 349
MBE -0.6 0.0 2494 12 -35.8 -0.2 2807 -10
R? 0.92 0.96 0.95 0.95 0.86 0.95 0.94 0.91
M5 Q,Q,..SSL_, | ANFIS RMSE 548 3.6 5796 244 764 6.9 4746 223
MBE 0.0 0.3 0 9 -16.8 0.2 1 2
R2 - the coefficient of determination, RMSE - root mean square error, MBE - mean bias error
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Figure 2. SSL estimation using M5 model at test period for four stations
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of conducting reliable simulations using this parameter when
there was a long gap between the data. The parameter T does
not require data measurements and is determined by time,
and so it is easily computable and may increase the estimated
sediment concentration accuracy. The use of this parameter
leads to a preferable simulation. In the third model, imposing
Q,, to Q,decreased errors in the results. The decreased error
value percentages for stations 1 to 4 were 12 %, 37 %, 43 %,
and 45 %, respectively, at the training stage, and -4 %, 7 %, 25 %,
and 44 %, respectively, at the test stage. However, the testing
error was slightly higher at Station 1. With the inclusion of SSL,
parameter in the M5 model, the error decreased conspicuously,
so that the decreased error percentages for Stations 2 to 4 were
50 %, 41 %, and 9 %, respectively, at the training stage, and 46 %,
71 %, and 41 %, respectively, at the test stage. At Station 1, the
error value decreased by 12 % at the training stage, but it slightly
increased at the test stage. In general, it was clear that the M4
model was more accurate than the M3 model at all stations,
and the accuracy of the M2 model was higher compared to the
M1 model. The comparison between the regression model and
the first model (Q,) showed that the regression model clearly
outperformed the ANFIS model at the training and test stages
for Station 3, and at the test stage for Station 4. It can be said
that at other stations the ANFIS yielded better results than
the regression model. As a result, the ANFIS model, which has
the current day flow, antecedent flow, and the antecedent
SSL (SSC) as inputs, was selected as the best fit model for SSL
(SSC) predictions. The temporal variations of the observed and
predicted SSL are shown in Figure 2 using the M5 model for
testing period at each station. Moreover, the SSL predictions are
plotted against the observed SSL results for each station. It can
be seen from scatterplots that the M5 model predictions are
slightly closer to the exact fit line at Stations 2 and 3, compared
to Stations 4 and 1, especially for high values. These plots,
when combined with results shown in Table 4, indicate that
the model performance for the full range of SSL data evaluated
in this study was superior for the M5 model, as confirmed by
greater R? and lower RMSE and MBE values compared to those
determined for other ANFIS models and the SRC model. .

3.1. Peak SSL estimation error

To study the accuracy of results produced by different ANFIS
models for the peak SSL prediction, the sediment peaks
observed at the test stage were compared with predicted
values for all stations. The goodness of fit statistics of
maximum SSL losses during testing are presented in Table 5
for various model approaches. It is evident from Table 5 that
each model produces different results at different stations. For
instance, the M1 model, which consists of Q, for the Station 1
data set had the worst performance compared to other ANFIS
models, and its results at Station 2 were almost the same as
those of the M2 model, while at Station 3 it performed even
worse compared to the regression model. Better results were

obtained when parameter T was also used to determine Q,
in the input matrix (M2 model), and the range of error values
dramatically decreased by 5 to 77 % for all four gauging
stations.

By adding T into the input combination, the inputs being Q,, Q,.
. the SSL estimation slightly improved the model performance
at Station 3. However, it failed to preserve its performance at
other stations. Overall, this implies that parameter T could
affect models to improve the accuracy of prediction without
discharge antecedent (Q, ) in the input because, otherwise,
the inclusion of T as input increases the training time with no
increase in model performance.

The overall results confirmed that the model 5, which included
flow (Q,), antecedent flow (Q, ,), and sediment load at the t-1st
day (SSL,_,), obtained the highest values of R% The lowest
RMSE and MBE values outperformed the other combinations
for simulating the sediment load corresponding to the
maximum discharge at all stations except at Station 1. M2, M3
and M4 models outperformed the M5 model at Station 1.

The peak SSL depends on many factors, and the model that uses
only the same day flow (Q,) as input was unable to compute high
SSLs with reasonable accuracy, as evidenced by high RMSE and
MBE values (Table 5). For example, considering the magnitude of
SSL prediction at Station 1, it was clear that SSL corresponding
to almost equivalent Q values are mostly 2.5 times different in
magnitude (Q = 1120, 1150; SSL = 10300, 24500, respectively).
This fact can be seen at other stations as well. The M5 model
that used SSL in the t-1st day (SSL, ;) inputs is able to provide a
significant accurate estimate of extreme SSL alterations. There
is, thus, a definite advantage in choosing SSL, , as input for SSL,
predictions. As shown in Table 5, the models tended to slightly
underestimate excessive SSL at Station 2, except for the M5
model. The values were overestimated in almost all models for
Station 3, while the values were overestimated in the M1 and
M3 models at Station 4. The obtained SRC model results clearly
show that the peak SSL could only be accurately estimated at
Station 2 as indicated by greater R? but it failed to preserve
its performance at other stations. The R? for the M1 model (Qt)
ranged from 0.23 to 0.7, whereas the peak SSL at Station 3 was
predicted fairly well by M1 model with an R? of 0.23, which was
almost as small as the value obtained using the SRC model.
However, the M1 model had relatively acceptable results at
other stations with R? higher than 0.41. It can be concluded that
the ANFIS model with the same input values as those for the
SRC model will increase the accuracy of the results.

3.2. Hysteresis phenomenon

The behaviour of suspended sediments, and changes in SSC
response to rainfall-runoff events, are not only a function of energy
conditions but are also related to variations in channel supply and
depletion. These changes in sediment availability result in the so-
called hysteresis effects [6]. As stated above, due to hysteresis,
the sediment concentration of two identical discharges were
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Table 5. Comparative statistical analysis of peak SSL at testing phase

Hydrological Statistical SRC Model ANFIS Model
station indicators M1 M2 M3 M& M5
R? 0.36 0.42 0.97 0.52 0.31 0.35
Station 1 RMSE 7050 5083 1784 4425 5360 5365
MBE -2650 -1739 =141 -985 -1249 -1522
R? 0,58 0.70 0.84 0.67 0.68 0.93
Station 2 RMSE 70 62 55 59 59 40
MBE -21 -19 -28 -4 -1 11
R? 0.30 0.23 0.68 0.89 0.63 0.98
Station 3 RMSE 70183 75061 34763 65167 38361 23705
MBE 43889 63279 13603 63551 11470 11287
R? 0.27 0.41 0.51 0.42 0.55 0.70
Station 4 RMSE 2062 2357 2190 1637 1783 1112
MBE -186 85 -382 168 -393 -133

higher in the rising limb than in the falling limb of the hydrograph.
The concentration of sediment loads can be compared when the
discharge at two sides of the hydrograph is the same.

In order to examine the accuracy at which the ANFIS models
can simulate the hysteresis behaviour, the models were used at
the testing stage for sediment load simulation at each station.
At stations 1 to 4 there were two, three, two and one identical
discharge(s), respectively, at two sides of the hydrograph. The
discharges selected at two limbs of the hydrograph, and the
corresponding SSC, are presented for four stations in Figure 3.
These discharges, along with the given sediment loads, were
used to investigate the hysteresis phenomenon.

In Figure 3, the (*) sign indicates the SSC with reasonable
estimation (i.e. the significant interval is in % 10 levels), and
the () sign shows that the predicted SSC on the falling limb of
the hydrograph is less than that on the rising limb, and that
it differs from the observed values. According to Figure 3, it
can be observed that in the regression model the estimated
SSC are the same for both the ascending and falling limbs
in an equal discharge because the SSC increases as a result
of increase in discharge caused by the power law relation
between them [37]. As expected, the M1 model that used Q,
as its only input could not simulate such a phenomenon at
all stations because, as observed in the regression model,
the discharge was the only input parameter. Thus the model
was unable to accurately simulate hydrograph conditions, and
distinguish whether the given discharge was on the ascending
or descending limb of the hydrograph. Considering the M2
model, the use of T as an additional input did not improve
the prediction accuracy in any of the four gauging stations
because the use of this parameter alone in ANFIS does not

enable determination of the ascending and falling limbs of
the hydrograph. The regression model and M2 model tend to
predict @ much higher SSC rate for a similar flow discharge.
Therefore, the results of these two models indicate that Q,
and T could not be used alone to correct hysteresis using
the ANFIS model. However, using Q_, as an additional input
led to a more accurate prediction of hysteresis phenomenon.
Therefore, there is an apparent advantage in choosing Q,.,as
an input for SSC prediction. The results also revealed that the
M3 model can accurately simulate hysteresis behaviour at all
stations except at Station 1 (Figure 3). However, in some cases
the accuracy declined dramatically as the estimated sediment
of the falling limb is mostly larger than for equivalent SSC on
the rising limb. As a comparison, Figure 3 shows the accuracy
of 62.5 % (i.e. 5 out of 8 events) for SCS prediction using the
M3 model. It can be concluded that the trained M3 model
performs well when compared to the M1 and M2 models.

It can be concluded that inclusion of the previous day discharge
(Q,,) had a significant influence on the simulation of hysteresis
in the ANFIS model because it enabled prediction of discharge
on the ascending or falling limb, and presented an appropriate
estimation. The M4 model, which utilized (Q,, Q,_,, T) performed
more accurately in some events but, in comparison with the
M3 model, its performance decreased in most of the events. It
therefore did not improve the simulation process. Considering
the M5 model, which includes SSC, , as an additional input to
the M4 model, its performance shown in Figure 3 is reasonably
appropriate, with a poor low value related to Station 1, and
is comparable to that of M3 model, although the M5 model
performance is slightly better as, out of 8 high flow events
analysed, 6 showed a good matching.
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Figure 3. Comparison of observed and simulated sediment concentrations for ANFIS models: a) Station 1, b) Station 2, c) Station 3, d) Station &

4, Conclusion

In the present study, the ANFIS and SRC models were
developed and a comprehensive comparison of the observed
SSL was carried out using different statistical criteria. In
addition, the observed and simulated SSL in different high
flow events were compared. To this aim, four sediment/river
flow gauging stations, namely the Merrimack River at Lowell,
Choptank near Greensboro, Susquehanna River at Harrisburg,
and Swatara Creek at Harper Tavern, operated by the USGS,
were employed to develop various models. After trying
different structures in terms of membership function type
and number, an optimum ANFIS model was obtained. ANFIS
models with different parameter settings were then built.
Three standard statistical performance evaluation measures
were adopted to evaluate the performance of various models
developed. The ANFIS estimates were compared with the
SRC model.

A small R? value for all four gauging stations indicated that
the discharge in the t-th day alone (M1 model) can not be
used to accurately predict the SSL using the ANFIS model,
and that the SRC was superior to the M1 Model at the testing
and trying phases. Among five different combinations for the
ANFIS model, the parameter T and the antecedent discharge
(Q,,) increased the SSL estimation accuracy. Based on
the results, it can additionally be concluded that the most
important factor at the test stage was the introduction
of the most recent SSL antecedent (SSL_,), so that it can

improve the ANFIS simulation. The best ANFIS combination
(M5 model) significantly improved model performance with
respect to the regression model. The M5 model simulated
the SSL satisfactorily and with reasonable accuracy. The
R? values for the M5 Model ranged from 0.92 -0.96 for the
training data set, and from 0.86-0.95 for the testing data set,
while the greatest R? was obtained at the Gauging Station 2.
In the next step, in order to utilize the responses of ANFIS
models for predicting the peak sediment load data sets, they
were compared at the test stage with the predicted values at
all stations. At three out of four stations, the RMSE and MBE
values of the M1 model were higher than the corresponding
values from other models, but the significant improvement
in the prediction accuracy occurred when the parameter T
was also used together with Q, in the input matrix. However,
the inclusion of the T parameter in the inputs of Q, Q,,
reduced the model performance. We found that the use of
the T parameter contributed to the maximum SSC prediction
accuracy, when it did not contain discharge antecedent (Q,
,) in the input. On the other hand, when the previous day
discharge and SSL were considered as inputs, the best result
corresponded to the combination Q,, Q,,, SSL,_, without the
effect of T on model improvement. According to the results,
M5 Model which included Q,, Q, , and SSL,_, was selected as
the best fit for predictions at stations 2, 3, and 4.

An additional analysis was conducted to determine the
ability of the studied models to handle hysteresis behaviour.
Our tests showed that the estimated SSC are the same for
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both the ascending and falling hydrograph limbs in an equal
discharge in the regression model, which was due to the
use of a power law relation between the sediment load and
discharge. Also, the results obtained through M1 and M3
modelsindicated that Q,and T alone did not accurately predict
the SSC using the ANFIS model. The M2 Model presented a
more accurate simulation of hysteresis behaviour. Therefore,
the variable Q,_, was identified as the most effective factor
in the hysteresis behaviour analysis. In brief, significant
improvements in the simulation of hysteresis could be
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