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Assessing ANFIS accuracy in estimation of suspended sediments

Capabilities offered by an adaptive neuro-fuzzy inference system (ANFIS) in the 
estimation of daily sediment loads at four stations in the USA, are explored in the 
paper. For this purpose, models with various input combinations of data sets were 
constructed to enable identification of the best possible structure. The results show 
that the best ANFIS model exhibits better performance compared to the SRC model, in 
terms of the RMSE, MBE and R2 values. The results also indicate that the ANFIS model 
can be applied to facilitate modelling of nonlinear dynamics of complex systems.
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Procjena točnosti ANFIS-a u prognoziranju lebdećeg nanosa

U radu se istražuju mogućnosti koje pruža prilagodljivi sustav neizrazitog zaključivanja 
zasnovanog na neuronskoj mreži (ANFIS) u predviđanju dnevnih količina lebdećeg nanosa 
koje je obavljeno na četiri stanice u SAD-u. U tu su svrhu izrađeni modeli s različitim 
kombinacijama ulaznih podataka kao osnova za određivanje najbolje moguće strukture. 
Dobiveni rezultati pokazuju da se najbolji model ANFIS ponaša bolje od modela SRC s 
obzirom na dobivene vrijednosti RMSE, MBE i R2. Rezultati također pokazuju da se pomoću 
modela ANFIS može pojednostavniti modeliranje nelinearne dinamike složenih sustava.
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Genauigkeitsabschätzung des ANFIS bei der Prognose von 
Schwebablagerungen

In dieser Arbeit werden die Möglichkeiten veränderlicher Systeme indirekter 
Schlussfolgerungen aufgrund neuronaler Netze (ANFIS) bei der Vorhersage täglicher 
Mengen von Schwebablagerungen untersucht, die an vier Stationen in den USA 
durchgeführt wurden. Dazu wurden vier Modelle mit verschiedenen Kombinationen 
von Eingangsparametern als Grundlage zur Ermittlung der optimalen Struktur erstellt. 
Die Resultate zeigen, dass sich in Bezug auf die gegebenen Werte RMSE, MBE und R2 
das beste ANFIS Modell besser als das SRC Modell verhält. Außerdem geht aus den 
Resultaten hervor, dass sich aufgrund des ANFIS Modells die Modellierung komplexer 
nichtlinearer dynamischer Systeme vereinfachen lässt.
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1. Introduction

Knowledge of the quantity, quality and dynamics of sediments 
is essential for designing dams, sediment transport, 
prevention of pollution in lakes and rivers, fish habitats, 
watershed management, etc. Direct measurement of 
suspension load is most reliable, but it is expensive and cannot 
be conducted for as many streams as the measurement of 
water discharge [1]. On the other hand, most of the sediment 
transport equations are derived from detailed information 
about the flow and sediment characteristics. Traditionally, 
the influence of short-term dynamics of storm event on 
sediment loading is characterized by rating curves to predict 
the suspended sediment concentration (SSC) or suspended 
sediment load (SSL) according to stream discharge (Q) in a 
certain region [1-10]. A rating curve has the following form, 
according [11, 12, 3]:

Qs = a · Qb  (1)

where Qs is the SSL (ton/day) or (gr/l), Q (m3/s) is the stream 
flow, and a and b are the rating coefficient and rating 
exponent, respectively. Due to high variability in water 
discharge and SSC values [13], this relationship is normally 
not homogenous in time, neither within nor between events, 
which causes a large scatter of SSC–discharge data pairs. 
On the other hand, the delivery of suspended sediments 
and water may result in hysteresis effects, i.e. different 
sediment concentrations for discharges of equivalent 
magnitude on the rising and falling limbs of a hydrograph 
[14-16].
Therefore, the SSC–discharge modelling is still a challenging 
task due to its nonlinear and hysteretic behaviour. According 
to [13], the form of the rating curve can be attributed to the 
dominant sediment source, dominant channel pattern and, 
to a certain extent, to the cross-section position within the 
river basin. Due to a large number of (unknown) parameters 
involved in this phenomenon, sophisticated computer 
modelling and simulation are required to predict the values 
accurately, and to enable finding nonlinear relations between 
variables. Recently, there has been a rise in interest about 
the use of soft computing methodologies, especially the 
artificial neural network (ANN) and the adaptive neuro fuzzy 
inference system (ANFIS), to model this phenomenon and 
enable finding nonlinear relations between variables.
In spite of suitable flexibility of ANN in modelling hydrologic 
time series, it may not be appropriate in situations when 
signal fluctuations are highly non-stationary and a physical 
hydrologic process operates under a large range of scales 
varying from one day to several decades. In such an uncertain 
situation, the Fuzzy Inference System (FIS) may be employed 
for estimating uncertainties in real situations. The ANN and 
FIS hybrid is one of the focal points of research, as it can 

make use of the advantages of both ANN and FIS and hence 
the acronym ANFIS.
Several studies about the application of ANFIS in the 
prediction of sediment have been conducted so far. The proof 
of concept for the application of ANFIS has been investigated 
in a number of research papers, and it was established that 
it performs comparatively well with respect to conventional 
sediment rating curve models, and that it takes into account 
the non-linear complex phenomenon [17-19]. Kisi and Shiri 
[20] compared the Genetic Programming (GP) technique with 
the ANFIS, ANN and SVM (Support Vector Machine) models 
for estimating the daily SSL at two stations in the Cumberland 
River in the U.S. The comparison results indicate that the 
GP is superior to the ANFIS, ANN and SVM models. Kisi [21] 
modelled the SSC using the ANFIS and ANN methods and 
found that the ANFIS model is superior to the ANN. Another 
study [22] highlights the advantage of ANFIS over ANN and 
SRC (sediment rating curve) models in the monthly suspended 
sediment prediction at Kuylus and Salur Koprusu stations in 
Kizilirmak Basin in Turkey. Aytek and Kisi [23] applied GP to 
suspended sediment transport, and found that it performs 
better than the conventional rating curve and multi-linear 
regression techniques. Rajaee et al. [24] applied the ANFIS, 
SRC, and ANN to estimate daily SSC, and they showed that 
the ANFIS works better compared to the others, and that it 
can satisfactorily simulate hysteresis phenomena. Yang et al. 
[25] examined the total sediment transport prediction using 
the ANN model. The average flow velocity, water surface 
slopes, average flow depth, and median particle diameter, 
were used to train the ANN. In another study, Rajaee [26] 
investigated the combined use of the ANN and Wavelet 
(WANN) for daily SSL prediction in rivers. Results showed 
that the WANN model simulated the hysteresis event better 
than other models. Furthermore, the ANN model simulated 
hysteresis in only one event, while the SRC model was unable 
to simulate the hysteresis phenomenon. Jain [27] presented 
a SVR (support vector regression) application to model the 
river discharge and sediment concentration rating relations, 
and compared the results with those derived from the ANN 
model. It was established that the SVR approach is better 
when compared to the ANN.
The reviewed literature shows that, despite many 
investigations on the discharge-sediment relationship using 
intelligent techniques, most efforts have been focused on 
the development of optimum ANFIS model parameters 
in order to estimate the suspended sediment, and then 
to verify the model efficiently with regard to peak SSL or 
hysteresis. The aim of this research was to characterize the 
effect of different input data on the SSL estimation accuracy. 
In particular, we explored the best combination of input data 
for the estimation of hysteretic behaviour and sediment load 
peaks using appropriate ANFIS structures at four stream-
gauging stations in the USA.
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2. Data and method

2.1. ANFIS

ANFIS is a multi-layer adaptive network-based fuzzy inference 
system [29]. An adaptive neural network is a network 
structure consisting of a number of nodes connected through 
directional links. Each node is characterized by a function with 
fixed or adjustable parameters. Learning or training phase of a 
neural network is a process aimed at determining parameter 
values to sufficiently fit the training data. The basic learning 
rule is the well-known back-propagation method that seeks 
to minimize some measures of error, usually sum of squared 
differences between network’s outputs and desired outputs 
[30]. The benefit of the ANFIS architecture comes from 
combining the fuzzy decision-making capability and the ANN 
learning capability to represent the dynamics of a non-linear 
system. ANFIS can be constructed as a five layer MLP network 
illustrated in Figure 1, with the following five layer operations:

Figure 1. A typical ANFIS structure

Layer (1):  X and Y are two typical input values fed at two input 
nodes, which will then transform these values to 
membership functions.

 i = 1, 2
 (2)

 i = 3, 4

where X (or Y) is input and mAi
 (ili mBi-2

) is the fuzzy set associated 
with this node.

Layer (2):  Every node in this layer multiplies the incoming 
signals. The output O2

i of the node i can be computed 
as:

 i = 1, 2 (3)

Layer (3): Such products or firing strengths are then averaged:

 i = 1, 2 (4)

Layer (4):  The node i in this layer calculates the contribution of 
ith rule in the model output function, which is defined 
based on the first-order method as [31]:

 i = 1, 2 (5)

where w  is the output of layer 3 and pi, qi, ri are the parameter 
sets.

Layer (5):  The single node of this layer calculates the weighted 
global output of the system as follows:

 (6)

Additional details about the ANFIS and hybrid algorithm can be 
found in [32].

2.2. Data and statistical analysis

Four river gauging stations operated by the US Geological 
Survey (USGS) provided time series data of discharge and 
sediment load that were used in this research. These stations 
are: 1100000 (Merrimack river at Lowell, New Hampshire), 
1491000 (Choptankriver near Greensboro, Maryland), 
1570500 (Susquehanna river at Harrisburg, Pennsylvania), 
and 1573000 (Swatara Creek at Harper Tavern, Pennsylvania), 

Date of the data
day/month/year

Drainage area  
[km2]LongitudeLatitudeStation descriptionStation IDHydrological 

station

25/05/1967 - 28/09/19721200571°17ʹ56ʺ42°38ʹ45ʺMerrimack river at lowell1100000Station 1

02/10/1980 - 30/09/1989292.6775°47ʹ10ʺ38°59ʹ50ʺChoptank Near 
Greensboro1491000Station 2

01/01/1976 - 30/09/19796241976°53ʹ11ʺ40°15ʹ17ʺSusquehanna river at 
harrisburg1570500Station 3

08/05/1959 - 30/09/1960
01/10/1976 - 31/12/1978872.8376°34ʹ39ʺ40°24ʹ09ʺSwatara creek at Harper 

Tavern1573000Station 4

Table 1. River monitoring stations and characteristics of their drainage areas



Građevinar 12/2015

1168 GRAĐEVINAR 67 (2015) 12, 1165-1176

Seyed Morteza Seyedian, Hamed Rouhani

and are herein referred to as the Station 1, Station 2, Station 3, 
and Station 4, respectively. The gauging stations, geographic 
coordinates, and operation periods, are presented in Table 1. 
Table 2 summarizes statistical characteristics of the observed 
discharge and SSL in training and testing sets, namely the 
minimum (xmin), maximum (xmax), mean (xmean,), standard 
deviation (Sx,), and coefficient of variation (Csx). The difference 
between the SSL and discharge data is identifiable. According 
to Table 2 Csx for SSL data is almost three times higher than 
the discharge data.

2.3. Evaluation criteria

The performance of the models was evaluated using 
quantitative statistical metrics including the root mean 
square errors (RMSE), mean absolute errors (MAE), and 
coefficient of determination (R2) statistics. R2 is a statistic 
that will give some information about the goodness of fit of 
a model. In regression, the R2 coefficient of determination 
is a statistical measure of how well the regression line 
approximates measured data. Moreover, the R² tends to 
reflect the proportion of the total variance in the observed 
data that can be explained by the model [33]. Different types 
of information about predictive capabilities of the model 
are measured through RMSE and MAE and also its variant 
in form of mean bias error (MBE) that includes the sign of 
deviation. The RMSE sizes the goodness of fit as related 
to high discharge coefficient values, whereas the MBE 
measures a more balanced perspective of the goodness of fit 
at moderate discharge coefficients [34]:

 (7)

 (8)

 (9)

where n is the number of data set, Ai and Bi are the observed and 
estimated values, respectively, A and B  are mean values of 
observed and estimated values, respectively.

2.4. Development of ANFIS model

Literature reviews on ANFIS show no specific rules for the 
subdivision of test and train data. However, from the overall 
input/output data, 75 % are normally used for the training 
procedure and the rest 25 % for model testing. The test and 
train data were chosen randomly in this research. One of the 
most important steps in the development of a satisfactory 
estimation model is the selection of input variables, which 
determines the structure of the ANFIS model, and affects the 
weighted coefficient and the results of the model [35]. Different 
combinations of antecedent values of daily river flows and daily 
SSL or SSC were used for constructing an appropriate input 

CsxSxxmaxxmeanxminData typeStation ID

0.98216.901210220.099.54Flow 
1

Tr
ai

n

3.301912.7624500579.021.80Sediment 

1.525.1765.73.390.07Flow 
2

3.8419.353515.040.02Sediment 

1.091313.61116001203.78138Flow 
3

3.1626372.362870008348.1157Sediment 

1.5429.8130619.420.93Flow 
4

4.771108.6518100232.500Sediment 

1.05219.221210208.6612.5Flow 
1

Te
st

3.402025.6026300595.027Sediment 

1.515.4163,13.590.12Flow 
2

4.1525.224066.080.02Sediment 

1.101284.2498001165.11136Flow 
3

2.5217442.141350006911.1266Sediment 

1.5026.8422817.861.36Flow 
4

4.09714.817440174.710Sediment 

Table 2. Statistical characteristics of the observed flow (m3/s) and SSL (ton/day)
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structure. Generally, two types of time series models can be 
developed: univariate and multivariate. Consequently, ANFIS 
was designed to model univariate and multivariate time series 
in which the univariate time series models used current and past 
discharge data alone, while the multivariate time series models 
used discharge data along with sediment load data. Therefore, 
five different ANFIS models were established to estimate SSL 
(SSC) for four downstream stations in the river system with the 
corresponding input vectors as follow:

(1) Qt

(2) Qt, T
(3) Qt, Qt-1

(4) Qt, Qt-1, T 
(5) Qt, Qt-1, SSLt-1 or (SSCt-1)

Where Qt is the flow at the t-th day, Qt-1 is the flow at the 
t-1st day, SSLt-1 or SSCt-1 the suspended sediment load and 
concentration at the t-1st day, and T stands for centralized time 
for dates.

A program code including fuzzy toolbox was written in the 
MATLAB software for ANFIS simulation. Different ANFIS 
architectures were checked using this code, and an appropriate 
model structure was obtained. For all models, the training was 
performed using an optimum hybrid method. This method is a 
combination of backpropagation and least squares methods 
that are used to train the network so as to minimize the error 
between the ANFIS output and desired response (SSL or SSC). 
Various types of input membership functions (triangular, 
trapezoidal, Gaussian and Gumbel membership functions) 
were tried for each ANFIS model. The training stage was 
carried out using the trial and error procedure by utilizing 
various estimator structures to determine an optimum set of 
fuzzy rules. The summary of optimum values is given in Table 
3. It can be seen quite clearly that the best entry functions in 
different stations and in different entry models were not the 
same and that, in most models, the constant membership 
function performed better than the linear one. Three or four 
membership functions for ANFIS models were considered 
sufficient for SSL modelling.

Number of fuzzy rulesNumber of input MFOutput MFInput MFStation IDModel input

33LinearaGauss21

Qt

44LinearbTri2

44ConstantcGbell3

33Lineardpsig4

93 3ConstantePi1

Qt, T
134 4ConstantGauss22

83 3ConstantGbell3

154 4linearGbell4

42 2ConstantPi1

Qt, Qt-1

42 2LinearGauss22

164 4ConstantGbell3

93 3Constantftarp4

233 3 3LinearTri1

Qt, Qt-1, T
223 3 3ConstantGauss2

83 3 3ConstantGbell3

123 3 3ConstantGbell4

163 3 3ConstantTri1

Qt, Qt-1, SSLt-1 

273 3 3ConstantGbell2

153 3 3ConstantTri3

233 3 3ConstantGauss24
a Membership function based on a combination of two Gaussian functions, b Triangular membership function
c Generalized bell-shaped membership function, d Product of two sigmoid membership functions
e π shape membership function, f Trapezoidal membership function , MF - membership function

Table 3. Summary of final architecture of ANFIS models
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3. Results and discussion

Statistical values of the best input combination of the training 
and test sets for ANFIS models at each station are presented 
in Table 4. The R2 values for the ANFIS training model ranged 
from 0.80 to 0.87 for the four stations for input M1 model 
when only the current day flow was used for SSL predictions. 
Similarly, the R2 ranged from 0.87 to 0.94 when the current 
day flow and centralized time for dates derived from the 
aforementioned analyses were used for the input M2 model at 
the training stage. The greatest R2 were obtained at Gauging 
Station 4, and the values from 0.87 to 0.94 were obtained for 
M1 and M2 models on the training data set. When antecedent 
flow was also used in the input matrix, the range of R2 values 
increased for all four gauging stations as in the M3 model 
and M4 model where R2 ranged from 0.90-0.94 and 0.94-
0.96, respectively. In M4 model, higher MBE and RMSE values 
indicate higher error, which shows poorer agreement of the 
modelled and observed values. Of the five ANFIS models, 
M5 model performed slightly better than the others in three 
stations out of four stations, and it resulted in the highest 
coefficients of determination (0.92-0.96). In addition, the 
RMSE and MBE values of M5 model for the station data set are 
lower than those of other models. The M5 model offered the 
lowest MBE values compared to other models in all stations. 
In Table 4, the best input combination at the training stage, 

in all stations except for Station 1, are sorted from lowest 
to highest as M1 model to M5 model; while the highest R2 
were obtained in Station 1 by M4 model. Comparison of input 
parameters revealed that the parameter T was almost non-
effective at Station 4 while in other stations this parameter 
improved the results in the second and fourth combination, 
and had the most accurate estimation.
During the testing phase, all developed models were used to 
conduct a SSL (SSC) forecast using an independent training 
dataset. As can be seen quite clearly in Table 4, unlike the 
results obtained at the training stage, the M2 model generally 
had better results compared to M3 model at the test stage at all 
stations, except at Station 4. In addition, the best model defined 
at the training phase (M5 model) consistently outperformed the 
others during testing stages at all stations except at Station 
1. Also, the parameter T improved the accuracy of predictions 
at the training stage for all stations, except for Station 4. This 
might be due to the fact that there was a 16-year gap between 
the data collected at this gauging Station, and that there was 
an extreme increase in T parameter values in the second 
part of data compared to the first part. The ANFIS technique 
could not adequately simulate these alterations, and so this 
parameter was not allowed to influence the values predicted at 
this station. Wang and Linker [36] used non-linear regression 
to show that parameter T could represent the effect of long-
term changes on sediment load, but ANFIS was not capable 

Table 4.Performance of SRC and ANFIS models simulating SSL at various gauging stations (RMSE and MBE= ton/day)

Station
Analizirani modeli

TestTrain

43214321
Statistički 
pokazatelji

VrstaInputsModel

0.720.800.800.800.730.780.830,84R2

SRC

QtM1

413685011.992358084658.0774RMSE

601679-0.1-84.2423680.5-91.7MBE

0.730.800.840.880.880.800.850.87R2

ANFIS 4541015810.8723387117147.4693RMSE

21793-0.7-29.101200.00.0MBE

0.720.830.910.900.910.870.910.94R2

ANFISQt,TM2 43072879.564133795035.8477RMSE

5-10-1.1-10.832840.00.3MBE

0.830.830.840.860.940.900.920.90R2

ANFISQt,Qt-1M3 315813310.175026781985.4616RMSE

11170-0.1-23.58810.80.0MBE

0.790.850.850.870.940.940.940.96R2

ANFISQt,Qt-1,TM4 34969459.973927162174.8401RMSE

-102807-0.2-35.81224940.0-0.6MBE

0.910.940.950.860.950.950.960.92R2

ANFISQt,Qt-1,SSLt-1M5 22347466.976424457963.6548RMSE

210.2-16.8900.30.0MBE

R2 - the coefficient of determination, RMSE - root mean square error, MBE - mean bias error
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Figure 2. SSL estimation using M5 model at test period for four stations
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of conducting reliable simulations using this parameter when 
there was a long gap between the data. The parameter T does 
not require data measurements and is determined by time, 
and so it is easily computable and may increase the estimated 
sediment concentration accuracy. The use of this parameter 
leads to a preferable simulation. In the third model, imposing 
Qt-1 to Qt decreased errors in the results. The decreased error 
value percentages for stations 1 to 4 were 12 %, 37 %, 43 %, 
and 45 %, respectively, at the training stage, and -4 %, 7 %, 25 %, 
and 44 %, respectively, at the test stage. However, the testing 
error was slightly higher at Station 1. With the inclusion of SSLt-1 

parameter in the M5 model, the error decreased conspicuously, 
so that the decreased error percentages for Stations 2 to 4 were 
50 %, 41 %, and 9 %, respectively, at the training stage, and 46 %, 
71 %, and 41 %, respectively, at the test stage. At Station 1, the 
error value decreased by 12 % at the training stage, but it slightly 
increased at the test stage. In general, it was clear that the M4 
model was more accurate than the M3 model at all stations, 
and the accuracy of the M2 model was higher compared to the 
M1 model. The comparison between the regression model and 
the first model (Qt) showed that the regression model clearly 
outperformed the ANFIS model at the training and test stages 
for Station 3, and at the test stage for Station 4. It can be said 
that at other stations the ANFIS yielded better results than 
the regression model. As a result, the ANFIS model, which has 
the current day flow, antecedent flow, and the antecedent 
SSL (SSC) as inputs, was selected as the best fit model for SSL 
(SSC) predictions. The temporal variations of the observed and 
predicted SSL are shown in Figure 2 using the M5 model for 
testing period at each station. Moreover, the SSL predictions are 
plotted against the observed SSL results for each station. It can 
be seen from scatterplots that the M5 model predictions are 
slightly closer to the exact fit line at Stations 2 and 3, compared 
to Stations 4 and 1, especially for high values. These plots, 
when combined with results shown in Table 4, indicate that 
the model performance for the full range of SSL data evaluated 
in this study was superior for the M5 model, as confirmed by 
greater R2 and lower RMSE and MBE values compared to those 
determined for other ANFIS models and the SRC model. .

3.1. Peak SSL estimation error

To study the accuracy of results produced by different ANFIS 
models for the peak SSL prediction, the sediment peaks 
observed at the test stage were compared with predicted 
values for all stations. The goodness of fit statistics of 
maximum SSL losses during testing are presented in Table 5 
for various model approaches. It is evident from Table 5 that 
each model produces different results at different stations. For 
instance, the M1 model, which consists of Qt for the Station 1 
data set had the worst performance compared to other ANFIS 
models, and its results at Station 2 were almost the same as 
those of the M2 model, while at Station 3 it performed even 
worse compared to the regression model. Better results were 

obtained when parameter T was also used to determine Qt 

in the input matrix (M2 model), and the range of error values 
dramatically decreased by 5 to 77 % for all four gauging 
stations.
By adding T into the input combination, the inputs being Qt, Qt-

1, the SSL estimation slightly improved the model performance 
at Station 3. However, it failed to preserve its performance at 
other stations. Overall, this implies that parameter T could 
affect models to improve the accuracy of prediction without 
discharge antecedent (Qt-1) in the input because, otherwise, 
the inclusion of T as input increases the training time with no 
increase in model performance.
The overall results confirmed that the model 5, which included 
flow (Qt), antecedent flow (Qt-1), and sediment load at the t-1st 
day (SSLt-1), obtained the highest values of R2. The lowest 
RMSE and MBE values outperformed the other combinations 
for simulating the sediment load corresponding to the 
maximum discharge at all stations except at Station 1. M2, M3 
and M4 models outperformed the M5 model at Station 1.
The peak SSL depends on many factors, and the model that uses 
only the same day flow (Qt) as input was unable to compute high 
SSLs with reasonable accuracy, as evidenced by high RMSE and 
MBE values (Table 5). For example, considering the magnitude of 
SSL prediction at Station 1, it was clear that SSL corresponding 
to almost equivalent Q values are mostly 2.5 times different in 
magnitude (Q = 1120, 1150; SSL = 10300, 24500, respectively). 
This fact can be seen at other stations as well. The M5 model 
that used SSL in the t-1st day (SSLt-1) inputs is able to provide a 
significant accurate estimate of extreme SSL alterations. There 
is, thus, a definite advantage in choosing SSLt-1 as input for SSLt 
predictions. As shown in Table 5, the models tended to slightly 
underestimate excessive SSL at Station 2, except for the M5 
model. The values were overestimated in almost all models for 
Station 3, while the values were overestimated in the M1 and 
M3 models at Station 4. The obtained SRC model results clearly 
show that the peak SSL could only be accurately estimated at 
Station 2 as indicated by greater R2, but it failed to preserve 
its performance at other stations. The R2 for the M1 model (Qt) 
ranged from 0.23 to 0.7, whereas the peak SSL at Station 3 was 
predicted fairly well by M1 model with an R2 of 0.23, which was 
almost as small as the value obtained using the SRC model. 
However, the M1 model had relatively acceptable results at 
other stations with R2 higher than 0.41. It can be concluded that 
the ANFIS model with the same input values as those for the 
SRC model will increase the accuracy of the results.

3.2. Hysteresis phenomenon

The behaviour of suspended sediments, and changes in SSC 
response to rainfall–runoff events, are not only a function of energy 
conditions but are also related to variations in channel supply and 
depletion. These changes in sediment availability result in the so-
called hysteresis effects [6]. As stated above, due to hysteresis, 
the sediment concentration of two identical discharges were 
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higher in the rising limb than in the falling limb of the hydrograph. 
The concentration of sediment loads can be compared when the 
discharge at two sides of the hydrograph is the same.
In order to examine the accuracy at which the ANFIS models 
can simulate the hysteresis behaviour, the models were used at 
the testing stage for sediment load simulation at each station. 
At stations 1 to 4 there were two, three, two and one identical 
discharge(s), respectively, at two sides of the hydrograph. The 
discharges selected at two limbs of the hydrograph, and the 
corresponding SSC, are presented for four stations in Figure 3. 
These discharges, along with the given sediment loads, were 
used to investigate the hysteresis phenomenon.
In Figure 3, the (*) sign indicates the SSC with reasonable 
estimation (i.e. the significant interval is in % 10 levels), and 
the (¡) sign shows that the predicted SSC on the falling limb of 
the hydrograph is less than that on the rising limb, and that 
it differs from the observed values. According to Figure 3, it 
can be observed that in the regression model the estimated 
SSC are the same for both the ascending and falling limbs 
in an equal discharge because the SSC increases as a result 
of increase in discharge caused by the power law relation 
between them [37]. As expected, the M1 model that used Qt 
as its only input could not simulate such a phenomenon at 
all stations because, as observed in the regression model, 
the discharge was the only input parameter. Thus the model 
was unable to accurately simulate hydrograph conditions, and 
distinguish whether the given discharge was on the ascending 
or descending limb of the hydrograph. Considering the M2 
model, the use of T as an additional input did not improve 
the prediction accuracy in any of the four gauging stations 
because the use of this parameter alone in ANFIS does not 

enable determination of the ascending and falling limbs of 
the hydrograph. The regression model and M2 model tend to 
predict a much higher SSC rate for a similar flow discharge. 
Therefore, the results of these two models indicate that Qt 
and T could not be used alone to correct hysteresis using 
the ANFIS model. However, using Qt-1 as an additional input 
led to a more accurate prediction of hysteresis phenomenon. 
Therefore, there is an apparent advantage in choosing Qt-1 as 
an input for SSC prediction. The results also revealed that the 
M3 model can accurately simulate hysteresis behaviour at all 
stations except at Station 1 (Figure 3). However, in some cases 
the accuracy declined dramatically as the estimated sediment 
of the falling limb is mostly larger than for equivalent SSC on 
the rising limb. As a comparison, Figure 3 shows the accuracy 
of 62.5 % (i.e. 5 out of 8 events) for SCS prediction using the 
M3 model. It can be concluded that the trained M3 model 
performs well when compared to the M1 and M2 models.
It can be concluded that inclusion of the previous day discharge 
(Qt-1) had a significant influence on the simulation of hysteresis 
in the ANFIS model because it enabled prediction of discharge 
on the ascending or falling limb, and presented an appropriate 
estimation. The M4 model, which utilized (Qt, Qt-1, T) performed 
more accurately in some events but, in comparison with the 
M3 model, its performance decreased in most of the events. It 
therefore did not improve the simulation process. Considering 
the M5 model, which includes SSCt-1 as an additional input to 
the M4 model, its performance shown in Figure 3 is reasonably 
appropriate, with a poor low value related to Station 1, and 
is comparable to that of M3 model, although the M5 model 
performance is slightly better as, out of 8 high flow events 
analysed, 6 showed a good matching.

ANFIS Model
SRC ModelStatistical 

indicators
Hydrological 

station M5M4M3M2M1

0.350.310.520.970.420.36R2

Station 1 536553604425178450837050RMSE

-1522-1249-985-141-1739-2650MBE

0.930.680.670.840.700,58R2

Station 2 405959556270RMSE

11-1-4-28-19-21MBE

0.980.630.890.680.230.30R2

Station 3 237053836165167347637506170183RMSE

112871147063551136036327943889MBE

0.700.550.420.510.410.27R2

Station 4 111217831637219023572062RMSE

-133-393168-38285-186MBE

Table 5. Comparative statistical analysis of peak SSL at testing phase
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4. Conclusion

In the present study, the ANFIS and SRC models were 
developed and a comprehensive comparison of the observed 
SSL was carried out using different statistical criteria. In 
addition, the observed and simulated SSL in different high 
flow events were compared. To this aim, four sediment/river 
flow gauging stations, namely the Merrimack River at Lowell, 
Choptank near Greensboro, Susquehanna River at Harrisburg, 
and Swatara Creek at Harper Tavern, operated by the USGS, 
were employed to develop various models. After trying 
different structures in terms of membership function type 
and number, an optimum ANFIS model was obtained. ANFIS 
models with different parameter settings were then built. 
Three standard statistical performance evaluation measures 
were adopted to evaluate the performance of various models 
developed. The ANFIS estimates were compared with the 
SRC model.
A small R2 value for all four gauging stations indicated that 
the discharge in the t-th day alone (M1 model) can not be 
used to accurately predict the SSL using the ANFIS model, 
and that the SRC was superior to the M1 Model at the testing 
and trying phases. Among five different combinations for the 
ANFIS model, the parameter T and the antecedent discharge 
(Qt-1) increased the SSL estimation accuracy. Based on 
the results, it can additionally be concluded that the most 
important factor at the test stage was the introduction 
of the most recent SSL antecedent (SSLt-1), so that it can 

improve the ANFIS simulation. The best ANFIS combination 
(M5 model) significantly improved model performance with 
respect to the regression model. The M5 model simulated 
the SSL satisfactorily and with reasonable accuracy. The 
R2 values for the M5 Model ranged from 0.92 -0.96 for the 
training data set, and from 0.86-0.95 for the testing data set, 
while the greatest R2 was obtained at the Gauging Station 2.
In the next step, in order to utilize the responses of ANFIS 
models for predicting the peak sediment load data sets, they 
were compared at the test stage with the predicted values at 
all stations. At three out of four stations, the RMSE and MBE 
values of the M1 model were higher than the corresponding 
values from other models, but the significant improvement 
in the prediction accuracy occurred when the parameter T 
was also used together with Qt in the input matrix. However, 
the inclusion of the T parameter in the inputs of Qt, Qt-1 
reduced the model performance. We found that the use of 
the T parameter contributed to the maximum SSC prediction 
accuracy, when it did not contain discharge antecedent (Qt-

1) in the input. On the other hand, when the previous day 
discharge and SSL were considered as inputs, the best result 
corresponded to the combination Qt, Qt-1, SSLt-1 without the 
effect of T on model improvement. According to the results, 
M5 Model which included Qt, Qt-1 and SSLt-1 was selected as 
the best fit for predictions at stations 2, 3, and 4. 
An additional analysis was conducted to determine the 
ability of the studied models to handle hysteresis behaviour. 
Our tests showed that the estimated SSC are the same for 

Figure 3. Comparison of observed and simulated sediment concentrations for ANFIS models: a) Station 1, b) Station 2, c) Station 3, d) Station 4
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both the ascending and falling hydrograph limbs in an equal 
discharge in the regression model, which was due to the 
use of a power law relation between the sediment load and 
discharge. Also, the results obtained through M1 and M3 
models indicated that Qt and T alone did not accurately predict 
the SSC using the ANFIS model. The M2 Model presented a 
more accurate simulation of hysteresis behaviour. Therefore, 
the variable Qt-1 was identified as the most effective factor 
in the hysteresis behaviour analysis. In brief, significant 
improvements in the simulation of hysteresis could be 

obtained by including in the model the hysteresis effect of 
sediment concentration within single events, including Qt 
and Qt-1.
Finally, visual observations based on graphical comparison 
between the observed and predicted values, and the 
qualitative assessment of the models, indicated that 
the M5 model is superior to other ANFIS models and 
SRC approximations in almost all evaluated sediment 
observations, taking into account the daily SSL, peak SSL, 
and hysteresis.
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