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This paper presents the use of a numerical model based on layered finite elements 
in the analysis of stress and strain due to creep and shrinkage of concrete and 
relaxation of prestressing steel in statically indeterminate composite structures. 
The calculation algorithm allows significant changes in the structure through 
characteristic time intervals, in accordance with technological procedures used 
during realisation of works. The corresponding computer program adapted to daily 
practical engineering design is also developed.
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Uslojeni konačni elemenati u proračunu spregnutih konstrukcija izloženih 
dugotrajnim djelovanjima

U radu je predložen jedan numerički proračunski model za analizu stanja naprezanja 
i deformacija zbog puzanja i skupljanja betona i relaksacije čelika za prednapinjanje 
kod statički neodređenih spregnutih konstrukcija utemeljen na uslojenim konačnim 
elementima. Algoritam proračuna omogućava da se kroz karakteristične vremenske 
intervale uvedu sve bitne promjene u konstrukciji u skladu s tehnološkim postupcima pri 
izvođenju radova. Razvijen je i odgovarajući računalni program prilagođen inženjerskim 
proračunima u praksi.
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In dieser Arbeit wird ein auf geschichteten finiten Elementen beruhendes numerisches 
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durch die Relaxation der Bewehrung verursachten Spannungs- und Dehnungszustands bei 
statisch unbestimmten Verbundkonstruktionen eingeführt. Der Berechnungsalgorithmus 
ermöglicht, dass durch kurze Zeitintervalle alle entscheidenden Veränderungen in der 
Konstruktion im Einklang mit technologischen Verfahren bei der Ausführung erfasst 
werden. Es wurde auch ein entsprechendes für Ingenieursberechnungen in der Praxis 
angepasstes Computerprogramm entwickelt.
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1. Introduction

A composite girder (CG) consists of two or more elements 
made of materials of different properties, which are structurally 
merged along the height of cross-section. CGs composed of steel 
and concrete are the most frequently encountered composite 
girder arrangements used in civil engineering. Engineers usually 
try to make the maximum use of the best properties of steel and 
concrete parts of the composite. It is known that highly optimal 
CGs can be obtained by assuming tensile stress with steel, and 
compressive stress with concrete. This enables realisation of 
elegant and slender structures, which are highly manufactured, 
with convenient quality of fabrication and built-in materials [1].
Various CG shapes can be formed depending on the type and 
extent of coupling of the concrete and steel composite. Depending 
on the technological procedure used in the process, coupling 
can be executed either for the overall or partial structural and 
service load, with or without pre-stressing the concrete and/
or steel girder. This is usually achieved by applying an overall 
or partial support when constructing the composite structure 
(CS) in phases. Composite elements can be executed using stiff, 
elastic or discontinuous couplings, which primarily depends 
on conditions during construction and use of the structure. 
The elastic and discontinuous couplings are specific types of 
couplings where favourable stress and strain distributions can 
be achieved across the CG cross section. However, in this paper 
the analysis is focused on the stiff steel-concrete composites, 
where yielding in the joint is not assumed to occur, and where 
there are no relative horizontal displacements of the contact 
surface between the steel and concrete, so that failure occurs 
by reaching the critical bending load, instead by shearing at 
the contact surface between composite elements. It is also 
assumed that the concrete part will assume the compression 
stress, and that the occurrence of tensile stresses and cracks 
practically excludes concrete from bearing the load. For this type 
of coupling it can be assumed with sufficient accuracy that the 
stress-strain ratio in the area of operating stresses (sc ≤ 0,4fck) 
is linear and that the assumption about the equality of strain at 
contact points between two materials is properly justified.
It is known that shrinkage and creep of concrete can over time 
significantly influence the change of stress and strain in CSs 
[2]. In the area of operating stresses, strain due to creep of 
concrete can be brought in an approximately linear relationship 
with stresses – linear creep theory, and in calculation creep is 
assumed to be independent from external load. These strains 
can be two to three, or even more times greater compared 
to elastic strain, and so it is very important to include these 
changes in the calculation and to ensure proper usability and 
durability of CSs, in addition to capacity, taking also into account 
the potentially different time intervals of inclusion of certain 
parts / layers in the stress activity.
In the area of linear creep theory, stress and strain ratios are 
provided in integral / differential forms, and these equations 
can not be resolved in closed form even for very simple stress/

strain histories. Therefore, practical issues are mainly resolved 
using numerical methods, and the problem is reduced to solving 
a system of algebraic equations. Analysing the stress and strain 
in statically indeterminate CSs is a more complex task because, 
over time, rheological properties of materials induce changes 
in response, and thus in cross-sectional forces, even without 
change in load. Basic calculations of statically indeterminate 
structures using the method of forces are presented in [2] with 
the introduction of viscoelastic properties of the material, and 
using the algebraic stress-strain relationship for concrete. These 
efforts were followed by development of calculation models 
based on the method of strain, and methods which used the 
discretization of structures on elements of finite dimensions. 
The finite element method (FEM) [3] is the best known and 
most widely used where, instead of differential equations, 
simple algebraic equations are established, whose matrix shape 
is highly suitable for programming and computer use.
A comprehensive and broad overview of methods for long-term 
analysis, including procedures defined in EN 1992, EN 1994-1-
1, and EN 1994-2, is presented in [4] and [5]. An overview of 
the state-of-the-art in the wider area of design and analysis of 
steel-concrete composite structures, with a specific focus on 
determination of the effective slab width, is presented in [6].
A calculation model using the FEM method is developed in this 
paper. Here, the stiffness matrix of the FE is applied using the 
layer method in cross-section, and the effects due to viscous 
properties of the material are introduced through a fictitious 
load [7]. The application of incremental forms of the stress-
strain relation for individual materials allows the procedure for 
discontinuous and continuous changes to be generalized by 
introducing fictitious and finite time intervals [8]. This reduces 
the overall calculation procedure to the resolution of algebraic 
equations in matrix form, which is convenient for programming 
and automation of the calculation process.

2. Incremental stress-strain relations

2.1. Incremental relation for concrete

It is known that concrete is a highly elastoplastic material that 
deforms under load. For finding mathematical stress-strain 
relations, idealized bodies or mechanical rheological models 
are used in theoretical rheology. For short-term loads in the 
elastic range, the relation is identified using the well-known 
Hooke’s law. However, long-term load leads to an increase in 
strain, even when stress is not increased. These strains increase 
with the duration of the load, and when load is applied to green 
concrete. Such strains are referred to in literature as creep 
strain in concrete. This is a complicated phenomenon requiring 
a complex mathematical interpretation [9]. For practical 
problems, the stress-strain relation is based on the linear creep 
theory. This theory starts from specific assumptions:
 - Concrete is treated as a homogeneous and isotropic material;
 - Current elastic strain of concrete is proportional to stress, 
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and depends on the age of concrete (variable modulus of 
elasticity);

 - Shrinkage of concrete is independent of stress, but is the 
consequence of the hardening process;

 - Creep of concrete is linearly dependent on the long-term 
influence of stress;

 - Boltzmann’s principle of superposition can be applied to 
creep strain.

In general, the total strain of concrete ec (t) occurring over time t 
is linearly dependent on the stress sc and amounts to [10]:

 (1)

where j(t,t) is the function of the creep of concrete and 
represents the total strain in time interval t  under constant 
unit stress sc = 1, which acts starting from moment t = t.
If the concrete cross-section is exposed to variable stress as 
the continuous function in time interval t0-t, then, based on the 
assumption about the superposition of strains, the total strains 
can be written as follows [8]

 (2)

where ecn(t) is the strain of concrete at the moment t independent 
of the stress, such as shrinkage or thermal strain.
The accuracy of results depends on the shape of the function 
of creep. Although there are a variety of theories of creep of 
concrete and analytical models for the function of creep, they 
will not be considered here due to space limitations.
Resolving the integral equation (2) requires numerical integration. 
For this purpose, the total time interval (t-t0) should be divided 
into subintervals Dti = ti-ti-1, (i = 1,2,...,k), in which the calculation 
is conducted successively (Figure 1). In doing so, abrupt changes 
in stress are included using fictitious (zero) intervals Dti=0, which 
enables generalization of the calculation procedure.

Figure 1. Time discretization

By forming a sub-integral in incremental form and applying 
some of the known methods of numerical integration, the 
stress-strain ratio for concrete can be expressed in the following 
form [8]:

 (3)

where Dec(tk) is the free strain of concrete and is given by:

 (4)

Ec(k,k-1) represents the generalized, and Ec(k,k-1) the derived 
deformation modulus of concrete, which depends on the type 
of numerical integration that is used for the adopted function 
of the creep of concrete. These modules are related using the 
following expression:

 (5)

where is:
Dec(tk) -  increase of strain of concrete in the current k-th time 

interval
Decn(tk) -  increase of shrinkage of concrete in the current k-th 

time interval
Dsc(ti) -  increase of stress in concrete in the i-th time interval 

(i=1,2,...,k-1).

Equation (3) represents a unique generalized form as all known 
stress-strain ratio forms for concrete can be applied including 
the Age-adjusted effective modulus method (AAEM method; 
Bazant, 1972). Thus, the course of calculation in the fictitious and 
finite intervals for the arbitrary history of external influences is 
unified regardless of the number of subintervals. More accurate 
calculations require a greater number of subintervals and computer 
application. However, with the successive application of the AAEM 
method, for simple load histories an acceptable accuracy can be 
achieved even with a minimum number of subintervals.
Using expression (3), the current final time intervals are included 
in a full recursive expression, and in the fictitious interval the 
corresponding module is reduced to the modulus of elasticity, 
and the free strain of concrete is then equal to zero. This is 
actually the well known form of the stress-strain ratio for elastic 
state (Hooke’s relation). Expression (4) provides the change of 
free strain of concrete in the current k-th time interval, from 
the previous stress history to the interval under consideration 
(without the influence of the k-th part of the stress history), 
along with the increment of shrinkage of concrete in the current 
k-th interval only.

2.2. Incremental ratio for prestressing steel

The pure (inherent) relaxation of prestressing steel (PS) can be 
defined as a drop in the initial tensile stress over a certain period 
of time at constant strain. However, in operating conditions 
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the strains in CG are variable over time, and so the strains in 
PS are also variable. By applying the incremental stress-strain 
ratio, these changes may be covered with sufficient accuracy for 
common practical problems [11]. The generalized form of the 
incremental ratio for PS can be written as:

 (6)

where Dspr(tk,tk-1) 
__

 is the change in stress due to the relaxation 
under variable strain, i.e. reduced relaxation of PS.
The increase in reduced relaxation can be represented as 
a product of two independent functions. The first function 
introduces the influence of the corrected stress discrete 
moments of the observed interval, while the second introduces 
the change in reduced relaxation over the past period of time. 
The simplified incremental form of reduced relaxation can 
assume the following form:

 (7)

where the corrected stresses for discrete moments of the 
observed interval assume the following form:

 (8)

 (9)

In determining the incremental relaxation, all values are known 
from the previous calculation step, with the only unknown being 
the corrected stress for the current step of calculation. This 
requires an iterative procedure, but appropriate simplifications 
can be introduced for practical use. Assuming that the 
corrected stress in the current time interval is constant, all 
values are known, which makes the aforementioned iterations 
unnecessary. Additional simplifications can also be introduced 
by using inherent relaxation instead of reduced relaxation, 
and by using actual stress for the preceding discrete moment 
instead of corrected stress, that is, by ignoring the effect of 
relaxation on the value of the initial corrected stress. In addition, 
the PS relaxation can also be introduced in calculation through 
simplified relation with the reduced modulus of elasticity [12]. 
This approximate approach procedure is on the side of safety, 
and the following expression is applied:

   (10)

In the above expression, the reduced modulus of elasticity Ep 
appears in the following form:

 (11)

where rp is the factor of relaxation that is most commonly 
specified in engineering regulations. This is usually the value of 
pure relaxation for the respective PS.

In discontinuous changes, fictitious (zero) time intervals are 
introduced, and then the incremental relaxation is equal to zero. 
It does not require any changes to the generalized expression, 
which is suitable when using matrix forms of equations and 
designing program packages.

2.3.  Incremental ratios for structural steel and soft 
concrete steel

For the steel part of composite cross-section - structural steel 
(SS) and non-tensile steel (mild steel, mild reinforcement - MS), 
a linear stress-strain ratio is assumed according to Hooke’s law 
for all time subintervals:

 (12)

 (13)

Matrix forms of expressions (1) through (6) are used in the 
following part of the paper, with component strains Der  and Dk, 
and the corresponding stress components Dar and Db [13].

3.  Equilibrium equation in composite girder 
cross-section

Consider a composite girder (CG) of known cross-sectional 
dimensions, load, mechanical properties of materials, and 
known conditions of development of shrinkage and creep of 
concrete. The cross-section can be described with equilibrium 
equations of internal and external forces, and the conditions 
of compatibility of strains and the constitutive stress-strain 
relations can be determined. Thus, the Bernoulli-s hypothesis 
of flat cross-sections (the linearity of strain distribution across 
the height of the cross-section) is assumed to be valid. The 
strain linearity is valid across the entire cross-section, and the 
abrupt change in the overall strain may be a result of inclusion 
of individual parts / materials of the composite section in the 
stress activity at different times (Figure 2). 

Figure 2. Cross-section and strain values in composite girder



Građevinar 11/2017

995GRAĐEVINAR 69 (2017) 11, 991-1005

Layered finite elements in the analysis of composite structures exposed to long-term effects

However, for the incremental form of equations, the increase in 
strain is a linear function for all active parts of cross-section, so 
that in a general case the following is valid [8]

 (14)

gdje su:
Dek -  increase of strain in the observed fibre of cross-section 

for the current time interval
Der,k -  increase of strain in the level of reference cross-sectional 

axis r (y=0)
Dkk - cross-sectional curvature
y - istance of the observed fibre from the reference axis r.

In accordance with the linear distribution of strains, stresses 
along the height of the cross-section are distributed linearly. 
However, the increase in stress in each part of the composite 
cross-section (c-concrete, a-SS, s-MS, p-PS) is defined by a 
specific pair of parameters Dar,k and Dbk in accordance with the 
constitutive stress-strain ratios. When writing the expressions 
in vector form, the equations assume the following form [13]:

 (15)

 (16)

 (17)

 (18)

When the shrinkage is equal at all points along the height of 
the cross-section, the vector of changes in free strains has the 
following form:

 (19)

For the k-th time interval and the adopted reference axis r, two 
conditions of equilibrium of external and internal forces can be 
established in the cross section: for the sum of forces in the 
direction of the girder’s longitudinal axis, and for the sum of 
bending moments around the reference axis. After integration 
of the established conditions and arrangement of terms, the 
relation between the change in strains and change in forces in 
the current time interval can be expressed as:

 (20)

The stiffness matrix of the cross-section is:

 (21)

where the matrices of geometrical characteristics of individual 
cross-section components assume the following form:

         m = c, a, s, p (22)

The stiffness matrix is variable in time only due to change in 
the generalized strain modulus of concrete Ec(k,k-1), while other 
components are constant in all time intervals. A special case is 
the inclusion of individual parts of the cross-section in the stress 
activity at different times, which is an additional reason for the 
change in the stiffness matrix of the composite cross-section 
formed in this way. The vector of change in fictitious forces, due 
to rheological characteristics of concrete and the PS, is:

 (23)

 (24)

The present calculation algorithm for given values of forces 
in the cross section has no specific additional limitations. 
Discontinuous changes are introduced through fictitious time 
intervals and these are special cases, where the expressions 
are reduced to standard elastic forms of relations. However, in 
statically indeterminate girders, due to rheological properties 
of concrete and PS, a change of forces occurs in cross-sections 
even without the change in load. The changes in these forces 
can not be taken into account by analysing the state in cross-
section as previously illustrated. Instead, the structure should be 
analysed as a whole system. Such complex analyses are mostly 
conducted using the method of forces and the method of strain, 
for which the basic equations of elasticity are extended as 
equations of viscoelasticity [2]. However, only the development 
of numerical methods has provided the convenience for the 
generalisation of calculation models and use of computers.

4.  Equilibrium equation of composite layered 
finite element 

The application of FEM requires discretization of the continuum 
into elements of finite dimensions. The set of all finite elements 
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(FE) interconnected in nodes forms the mesh of FE of the 
structure under consideration. In the established system of 
algebraic equations, dimensions related to element nodes 
are taken as unknown dimensions [3]. The use of the FEM for 
the problem under study requires introduction of a number of 
assumptions [13]:
 - The analysis relates to linear finite elements which in general 

case form a composite concrete and steel part, with additional 
PS and MS. It is assumed that a full coupling is achieved, i.e. 
the equality of increase in strain  (Dec,k=Dea,k=Des,k=Dep,k=Dek) 
applies for the current k-th time interval;

 - Bernoulli’s assumption of straight cross-sections holds, as 
well as the linearity of change of strain along the height of 
the composite cross-section (the influence of shear on strain 
in the FE can be ignored);

 - Discretization is carried out along the length of the structural 
element; the contribution of the curve is introduced in the layers 
along the height of the cross-section in addition to axial strain, 
while the contribution of the cross-section rotation is ignored;

 - Composite elements are approximated using the straight-line 
FE in the xOy plane, where an arbitrary point in an element 
has three degrees of freedom of movement: horizontal 
displacement u(x), vertical displacement v(x), and rotation of 
the cross-section j(x). When nodal displacements are taken as 
unknown dimensions, the linear finite element has, in general 
case, six degrees of freedom, and three unknown generalized 
displacements in each node (u1, v1, j1, u2, v2, j2)  (Figure 3).

Figure 3. Linear finite element

The following rule on signs has been applied: u and v - 
displacements, N and T - forces, stresses s and the corresponding 
strains e, are positive in the direction of positive axis of the 
coordinate system. Rotation, j, bending moment, M, inclination 
of stress diagram, b, and curvature, k, are positive when their 
rotational direction is counter clockwise. Stresses and strains 
are related to the local coordinate system only. According to 
this rule, shrink strains of concrete ecn in the initial (first) node of 
the analysed FE are positive, while they are negative in the final 
(second) node. The same rule applies to the change in stress 
Dspr during relaxation of PS.
The incremental relation between the components of strain 
(strains and curves) and displacement (longitudinal and 
transverse) of the analysed FE in the current k-th time interval, 
in the form of transposition, can be expressed as follows:

 (25)

Changes of parameters of displacement along the elements 
Du(x) and Dv(x) are defined through the assumed displacement 
field of FE. The displacement field is determined using 
interpolation functions (functions of form) [3]. The interpolation 
matrices N are defined by assuming that cross-sectional 
rotation is the corresponding derivative of displacement, i.e. 
that Dj(x)k= -dv(x)k/dx, . These matrices relate the vector of 
displacement Dq(x)k  in the field of the element and the vector 
of nodal displacements Dqk in the analysed k-th time interval. 
Based on differential relations given in expression (25), a 
relation can be established between the strain components 
along the rod axis and the displacements of nodal points of 
components:

 
(26)

If it is assumed that the displacement of nodal point FE relates 
to the displacement of the point in the reference axis r, and by 
applying the corresponding derivatives in expression (26) using 
shorter annotations, a relation is established between the 
primary strain values Der and Dk of points of the element field 
and the vector of nodal displacements Dqras follows:

 (27)

where the matrix Br has the following coefficients:

 (28)

In line with the adopted assumption of straight cross-sections, 
the dilation in an arbitrary point of cross-section where the 
matrix Br has the following coefficients: is determined from the 
following expression:

 (29)

When inserting equation (33) in (35), the strain in an arbitrary 
point of the FE cross-section has the following form:

 (30)

where matrix G for dilation of an arbitrary point has the following 
coefficients:
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DQk - vector of external nodal forces
DQc,k 

*  -  vector of fictitious nodal forces due to creep and 
shrinkage of concrete

DQp,k 
*  -  vector of fictitious nodal forces due to relaxation of PS.

Expression (38) represents the generalized condition of 
equilibrium of the linear layered (composite) FE in the local 
coordinate system.

4.1. Stiffness matrix of layered finite element

The stiffness matrix of the composite FE (Kk), for the general 
case, written as the sum of proportions of concrete, SS, MS and 
PS, is:

 (39)

After the integration, the stiffness matrix coefficients for 
individual layers / materials of the composite FE assume the 
following form (indices c, a, s, p are replaced with index m):

 (40)

Stiffness matrix coefficients (40) differ from stiffness matrix 
coefficients of the homogeneous rod by the member Em,kSm,k/L. 
The dimension Sm,k is the static momentum of the cross-
sectional surface relative to the reference axis r. This is the 
member through which the influence of the height position of 
individual layers in the composite cross-section is introduced.

4.2. Vectors of nodal forces for layered finite element 

The vector of nodal forces coming from external load in the 
transposed form (for the ease of display) is:

 (41)

In line with the FEM concept, the load of the element 
field is replaced by equivalent nodal force components. 
Correspondingly, any arbitrary element load can be replaced 
with an equivalent nodal load [3]. The vector of fictitious nodal 
forces of the concrete part of cross-section is:

  (42)

The emergence of fictitious nodal forces is in accordance 
with changes in the element due to shrinkage and creep 
of concrete in the given interval. These forces may also 

 (31)

The matrix format of expression (30) represents the relation 
between the increase of strain Dekin the arbitrary point in the 
field FE and the increase of displacement of its nodes in the 
analysed k-th time interval. All the above facts apply to all 
component materials (c-concrete, a-SS, s-MS, p-PS).
In line with the adopted assumption of full (rigid) coupling, where 
the increments of strain of all parts / layers of the composite 
cross-section in the analysed reference axis are equal to each 
other, the equality of displacement for the current k-th time 
interval is also true:

 (32)

After substituting equations (30) in equation (3), and bearing 
in mind the above equality of displacements, the incremental 
relation between stresses and nodal displacements of the 
concrete part of the cross-section has the following form:

 (33)
where the relation between the free strains and free 
displacements assumes the following form:

 (34)

Incremental relations for other layers / materials of the 
composite element can be written in a similar way:

 (35)

 (36)

 (37)

The theoretical foundation on which the FEM relies is the 
principle of minimum energy in varying displacements, that is, 
the principle of equality in increment of operation of external 
forces on predefined displacements and the increment of 
operation of internal forces on respective strains [3]. In the 
general case, the operations must be summed up for all layers 
/ materials of the composite element (c-concrete, a-SS, s-MS, 
p-PS). Expressions are further derived using the corresponding 
replacements, virtual displacements and Lagrange’s theorem. 
By transforming the matrix products under the integrals (scalars) 
and using the stance about the minimum total potential energy 
change dDP = 0, and by differentiating the term Dqrk T  we obtain 
that:

 (38)

where is:
Kk  - stiffness matrix of the composite FE
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be given physical interpretation [13]. According to the 
definition, free strains, or free displacements, are caused by 
shrinkage and creep of concrete, rather than by direct action 
of external loads. Assuming that concrete displacements 
are temporarily prevented by introduction of fictitious 
internal connections, gradual changes occur in the stress, 
i.e. in fictitious forces, due to rheological properties of 
concrete. These forces cancel free displacements. As the 
analysed fictitious element lacks conditions that prevent the 
occurrence of free displacements, it is necessary to remove 
these conditions, i.e. it is necessary to apply negative values 
of fictitious forces in nodes in which the effect of reaction of 
fictitious conditions is cancelled.
The direct determination of fictitious forces using the right-hand 
side of equation (42) for the adopted FE model first requires 
definition of the vector of free displacement of nodal points Dqr,c,k *

. However, these displacements cannot be determined from 
expressions (33) and (34) because G-1 is unknown. In conditions 
defined in this way, fictitious forces can only be determined based 
on the free strains in the concrete part of cross-section. Therefore, 
in the process of arranging the expression, the part of equation (38) 
that defines fictitious forces should be taken a step back:

 (43)

Free deformations in the concrete part of cross-section 
can be defined from the matrix form of equation (4), where 
the component Dk defines the change of strain along the 
height of cross-section. According to basic FEM postulates, 
these cross-sections refer to cross-sections in the nodes of 
elements. However, determining fictitious forces based on 
equation (43) requires integration across the volume of the 
element’s concrete part / layer. This requirement, in addition 
to knowing the changes in strain along the height, also 
involves knowing changes in strain along the element. In line 
with the adopted FEM model, the external load of the element 
field is replaced with equivalent forces in nodal points. By 
introducing the function of form, a relation is established 
between the displacement of points in the element field and 
the displacement of nodal points. The relation between the 
free deformations in the element field and the corresponding 
values of these deformations at the ends of the rod, that 
is, in nodes 1 and 2 of the element, can be established in a 
similar way. Sufficient accuracy is achieved by using the linear 
relation, i.e. functions across the x variable:

 (44)

The substitution of expression (44) in (43) and its integration 
determines the components of nodal fictitious forces:

 (45)

Using expression (45), the fictitious forces are completely 
determined. The static moment of the Sc,k surface introduces the 
influence of the height position of the concrete part / material 
relative to the reference axis. The fictitious normal forces are 
constant and averaged along the analysed FE, which is in line 
with the adopted assumptions. This averaging affects accuracy 
of the calculation procedure. By adopting a more refined division 
and increasing the number of finite elements, the accuracy of 
the calculation model also increases. The increment vector of 
fictitious forces due to relaxation of PS is:

 (46)

A sufficient accuracy is achieved when adopting a linear function 
across the variable x for changes in relaxation:

 (47)

By substituting expression (47) in equation (46), we get:

 (48)

In this procedure, the influence of the height position of PS relative 
to the reference axis is introduced through the static moment of 
the Sp,k surface. The fictitious normal forces are constant along the 
analysed FE, which is in line with the adopted assumptions. The 
physical interpretation of occurrence of fictitious forces due to 
relaxation of PS is analogous to what is described for the concrete 
part of cross-section. By applying negative values of total internal 
forces, the basic equation for the FE assumes the following form:

 (49)

where the stiffness matrix establishes a relation between 
nodal forces and nodal displacements. The previous equation is 
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actually a system of algebraic equations, where the rheological 
properties of concrete and the PS are also introduced, in addition 
to the elastic characteristics of the material.
Discontinuous changes in load are introduced through fictitious 
time intervals Dtk=0. Then zero values are obtained for fictitious 
forces. This case is actually a well-known system of equations 
for FEs with elastic properties of materials:

 (50)

The external load is usually unspecified for the finite time 
interval length (Dtk > 0). Only fictitious forces are present. For 
this case, the basic equation for the FE will be reduced to the 
equation for viscoelastic materials:

 (51)

5.  Equilibrium equations for finite element 
systems

The application of the finite-element method implies that 
the analysed structure (system) be divided into elements 
that form a FE mesh. In order to form a system of equations 
for the FE mesh, it is first of all necessary to set up basic 
equations for each FE. To set up an equilibrium equation for 
the system, the stiffness matrix and force vectors for each 
FE must be transformed from a local to a global coordinate 
system [3].
The system equilibrium equation (in matrix form) is obtained 
when the stiffness matrices and force vectors from the 
expression (49) for each KE are superimposed based on the 
criterion of interconnection of the system nodes [3]. The 
generalized equilibrium equation for the composite system as 
a whole is formed by placing the coefficients of the stiffness 
matrix and the force vectors of FE at the corresponding 
positions:

 (52)

The previous equation covers both the elastic and viscoelastic 
properties of composite materials. Viscoelastic changes are 
included using the time intervals of finite length (Dtk > 0), while 
elastic (discontinuous) changes are included based on the 
fictitious time intervals (Dtk = 0).

5.1. Fictitious force vector of the system

An error due to averaging axial forces for each FE for the 
general case of complex bending is introduced when calculating 
components of the fictitious force vector occurring due to the 
rheology of concrete and prestressed steel using expressions 
(45) and (48). This error is lower when the structural division is 
more refined. As average values are obtained using expressions 

(45) and (48), the actual values of fictitious axial forces remain 
unknown (Figures 4 and 5), so that their distribution along 
each analysed FE is unknown.
At this point, an improvement has been introduced to the 
computational model, which increases the accuracy of results 
even without a substantial increase in the number of FEs in 
the system. This improved process starts by calculation of 
actual fictitious axial forces (Figures 4 and 5), which are then 
averaged and used in the calculation step in which the FEM 
equilibrium conditions must be satisfied. Averaged expansion 
values are calculated in the next step, which is followed by 
introduction of their repair in nodes (a process reverse to 
averaging).
In the analysed FE, actual values of fictitious axial forces can 
be obtained from expression (45) by excluding the influence 
of strain components of one node on another, i.e. when the 
corresponding stiffness matrix coefficients of the concrete layer 
assume a zero value:

 (53)

With fictitious forces calculated in this way, the equilibrium 
condition of the analysed FE in longitudinal direction is not 
satisfied. That is why the longitudinal force needs to be averaged 
in the next step of calculation (Figure 2):

 (54)

The calculation model is illustrated by the example of the 
girder / beam where FEs are placed in succession / straight 
line (Figure 6.a). The diagram of bending moments in the first 
/ fictitious time interval from the set load (current elastic state) 
is shown in Figure 3b. In the second / final time interval, the 
free deformations of the concrete part of cross-section (Figure 
4) are calculated using expression (5), and then fictitious forces 
in FE nodes are determined from equation (53) (Figures 6.c and 
6.d).

Figure 4. Free deformations in concrete and fictitious forces
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Figure 5. Fictitious axial forces of FE (actual and averaged)

In the second (final) time interval, fictitious axial forces are 
cancelled by adding up the forces belonging to the same 
node, since these forces are equal and opposite to one 
another in the cross-sectional node of two adjacent FEs 
(Figure 6.d). Fictitious bending moments are also cancelled 
(Figure 6.c), but only apparently, because these moments 
are adequately introduced in calculation through shear 
forces (Figure 6.f). If fictitious axial forces of each FE are 
not averaged, the contributions of these forces will not be 
accounted for in overall stresses and deformations. This 
would lead to significant deviations from the usual accuracy 
of calculation. According to the adopted model, the analysed 
FE lacks variable axial force. By averaging the values of axial 
forces according to expression (54), a stepwise diagram of 
these forces is obtained (Fig 6.e), so that the final values 
are obtained by adding them up in nodes (Figure 6.g). Thus, 
the contribution of the influence of fictitious axial forces is 
introduced in the subsequent calculation procedure, which 
leads to the results of acceptable accuracy.

Figure 6. Fictitious forces of composite FEs in sequence/straight line

To increase the accuracy of calculation for systems with a 
lower number of FEs when calculating strain for the current 

time interval, an increase of strain DeN,k  should be added (or 
subtracted) to (from) each averaged diagram of each analysed 
FE (Figures 5 and 6e):

 (55)

Thus an inclined diagram along the FE is formed once again, 
leading to an accuracy that is sufficient for usual practical 
analyses of composite structures. An analogous procedure also 
applies to the vector DQp,k 

*   due to relaxation of PS.

6. Stress-deformation state

Finding solution to the system of algebraic equations (52) 
enables determination of the vector of node displacement 
in the system for the current time interval. In the first step, 
it is necessary to introduce boundary conditions across the 
displacements and / or forces and eliminate the known 
conditions, because the stiffness matrix is singular. The strain in 
components of the analysed FE can be determined after setting 
apart the vector of displacement for its nodal points. These 
displacements should further be transformed from global to 
local coordinate system [3].
If the external load of the element field is introduced to 
the calculation through equivalent nodal forces, where the 
introduced elements are DMM and if the fictitious normal 
forcesDNM, are previously averaged, the part of strainDeN,k 
and the part of curvature DkM,k  will also be introduced in the 
calculation of the analysed FE:

 (56)

In line with assumption on the equality of deformations, the 
calculated parameters of change in strain of the analysed 
FE apply to all cross-sectional layers / materials. However, 
stresses must be determined separately for each cross-
sectional layer using incremental forms of the stress-strain 
relation for individual materials (SS, MS, concrete and PS) given 
by expressions (15-18). Stresses along the height of individual 
layers are changing linearly, with abrupt changes occurring at 
contact surfaces between layers as a result of different physical 
and mechanical properties of materials.
Total stress and strain parameters for the discrete instant of 
time tk are determined by superposing the previous state and 
increment of state in the current time interval (step-by-step) for 
each layer / material  (m = a, c, s, p):

 (57)
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 (58)

For the parts / layers of the cross-section that are simultaneously 
included in the stress activity there is no abrupt change in 
total strain in the line of coupling. However, as the present 
calculation model supports subsequent inclusion of individual 
cross-sectional parts, depending on technological process used 
in execution, abrupt changes occur in the total strain at contact 
surfaces. The present calculation procedure is automated, and 
the authors developed a computer program that can resolve 
problems commonly encountered in engineering practice.

7. Numerical analysis and discussion of results

The application of the present calculation procedure is illustrated 
by the example of a continuous composite bridge frame structure 
(L = 23.35 + 40.00 + 23.35 = 86.70 m) made of prestressed 
concrete products (Figure 7 - longitudinal cross-section, 
Figure 8 - cross-sections of the beam in the field and above 

the pillars) taken from [2] in order to check the accuracy of the 
developed calculation model. The beam is prestressed using 
cables consisting of 12 wires, each 5 mm in diameter. One cable 
introduces normal force of P = 240 kN into the beam in the centre 
of gravity of cables. The cables are arranged in seven groups 
marked with letters from A to G (Figures 9 and 10). Groups A, C, 
D, F and G contain straight-line cables. The maximum number of 
cables in group A (cross-section 4) is 8, in group C (cross section 
10) 64, in group D (cross-section 10) 28, and in groups F and G 
(cross section 15) 8 (each). Groups B and E contain curved cables 
arranged along the ribs on the inward side of the box. Groups B 
and E consists of 24 and 48 cables, respectively.

Figure 8. Transverse cross-sections of the beam in field and above pillars

Figure 7. Longitudinal disposition of the bridge

Figure 9. Longitudinal arrangement of cables

Figure 10. Arrangement of reinforcement and cables at cross-sections (a), (b) and (c)
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The mild structural reinforcement of the beam is constant along 
the entire length and consists of 107 f10 and 8 f14 reinforcing 
bars. The arrangement of this reinforcement is shown in the 
characteristic cross-sections of the beam (Figure 10).
Pillars are of circular cross-section (f66 cm), placed under each 
box, and rigidly connected with the girder and the footings of 
foundation. The mild reinforcement of pillars consists of 28 f20 
bars in the bottom part and 44 f20 bars in the top part. 
The structure of the bridge is made of MB45 (C 35/45) concrete 
with the modulus of elasticity of Ec = 35 GPa. The coefficient of 
creep of concrete is taken to be j = 2.0, while the coefficient 
of shrinkage is taken as en = 2x10-4. For the adopted algebraic 

relation of the method of average stress [2] the coefficient of 
aging should be taken as c = 0.5. The modulus of elasticity of 
the mild reinforcement is Es = 210 GPa, while the modulus of 
elasticity of cables is Ep = 178.5 GPa.
The stress and strain state in the bridge structure has to be 
calculated to take into account the following actions:

 - the structure’s own weight (Figure 11)
 - pre-stressing of the bay girder (Figure 12),
 - concrete shrinkage.

The bridge structure should be executed in such a way that the 
structure is free from scaffolding at the time when the pre-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

21

20

19

18

Figure 11. Continuous load of the girder

Figure 12. Arrangement of prestressing forces

Figure 13. Division of girder into finite elements
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stressing of cables is finished, and when the calculated forces in 
cables are already acting, but prior to injection of pipes. In such 
conditions, the structure’s own weight is assumed by the girder 
cross-section, without contribution of the cable geometry.
In [2] the problem is solved using the method of forces 
individually for every action. The solution is given assuming 
that the PS is an elastic material, and for strain resulting from 
the creep of concrete an algebraic relation has been adopted 
for medium stress. This is an approximate algebraic relation of 
theory of aging at constant elastic modulus of concrete.
The division of the girder to FEs and the position of nodes are 
shown in Figure 13. The geometric data on FEs and their layers 
are given in Table 1. Therefore, the top edge of the pavement 
slab has been chosen as the fixed axis of all FEs.

For the solution of this example, and for the sake of comparing 
the results and verifying the developed calculation model, 
including verification of computer program, three examples 
were formed in the first variation (three input files) in accordance 
with the set influences a), b) and c) (Table 2). The initial tensile 
stress in cables is calculated as s(t0) = P/Ap.
In the second variant, the task is solved using a single input 
file, because the present calculation model is generalized and 
enables including individual parts (layers) of cross-section in the 
active stress parts at various times. Also, any subsequent effects 
can be included in accordance with the staged realisation of the 
structure. At that, all abrupt (elastic) changes are introduced 
through fictitious intervals (Dt = 0). Therefore, two or three time 
intervals can be formed for the analysed example, depending on 

Table 1. Details on finite elements and their layers

Table 2. Separate examples for the set individual effects

FE 1 2 3 4 5 6 7 8 9

Co
nc

re
t A

I
YT

2.79480
0.76254
0.46222

2.79480
0.76254
0.46222

2.79480
0.76254
0.46222

2.79480
0.76254
0.46222

2.79480
0.76254
0.46222

2.79480
0.76254
0.46222

2.79480
0.76254
0.46222

2.89680
0.83563
0.49256

3.16880
0.98569
0.55918

Re
in

f. A
I

YT

0.00963
0.00352
0.67539

0.00963
0.00352
0.67539

0.00963
0.00352
0.67539

0.00963
0.00352
0.67539

0.00963
0.00352
0.67539

0.00963
0.00352
0.67539

0.00963
0.00352
0.67539

0.00963
0.00352
0.67539

0.00963
0.00337
0.66300

Ca
bl

e A
I

YT

0.00661
0.00000
0.46222

0.00661
0.00025
0.87999

0.00661
0.00007
1.10286

0.00755
0.00007
1.19500

0.00850
0.00110
1.05778

0.00944
0.00173
0.88800

0.00944
0.00142
0.60400

0.01038
0.00127
0.39273

0.01227
0.00042
0.27192

FE 10 11. 12 13 14 15 16 17 18. 19 20. 21

Co
nc

re
t A

I
YT

3.44080
1.08524
0.60894

3.74680
1.15438
0.64935

3.33388
1.05283
0.59200

2.96480
0.87884
0.51105

2.79480
0.76254
0.46222

2.79480
0.76254
0.46222

2.79480
0.76254
0.46222

0.68424
0.01863
0.00000

0.68424
0.01863
0.00000

Re
in

f. A
I

YT

0.00963
0.00330
0.65680

0.00963
0.00320
0.64637

0.00963
0.00333
0.65941

0.00963
0.00344
0.66854

0.00963
0.00352
0.67539

0.00963
0.00352
0.67539

0.00963
0.00352
0.67539

0.01759
0.00059
0.00000

0.02765
0.00099
0.00000

Ca
bl

e A
I

YT

0.01605
0.00053
0.22676

0.02171
0.00062
0.18848

0.02171
0.00062
0.18848

0.01794
0.00239
0.48211

0.01699
0.00204
0.90778

0.01510
0.00020
1.16125

0.01510
0.00006
1.25125

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

Time interval Excluded parts of the cross-section in the initial interval  
∆t1∆t1 = 0 ∆t2 = ∞

Ef
fe

ct
s 

of
 a

ct
io

ns Example 1a: The structure's own weight Concrete shrinkage Cables (for all FE)

Example 1b: Prestressing the girder Concrete shrinkage Cables (for all FE)

Example 1c: Concrete shrinkage Concrete shrinkage
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the need for considering contributions of individual influences 
to the changes in the stress-strain state. In both cases, the last 
interval is finite, while the first one, or the first two, are fictitious 
(Tables 3 and 4).
In the first interval (Dt1 = 0) it is the steel girder and the concrete 
slab which are active, given that the prestressing cables are 
not yet injected and fail to make part of the composite cross-
section, whereas the prestressing force is introduced as external 

Table 3. Unified example for the set actions – two time intervals

Table 4. Unified example for the set actions – three time intervals

Interval ∆t1 = 0 ∆t2 = ∞

Effects of actions a) Structure's own weight
b) Girder prestressing

c) Concrete shrinkage
Concrete creep

Excluded parts of the cross-section Cables (for all FEs)

Interval ∆t1 = 0 ∆t2 = 0 ∆t3 = ∞

Effects of actions b) Girder prestressing a) Structure's own weight c) Concrete shrinkage 
Concrete creep

Excluded parts of the cross-section Cables (for all FEs) Cables (for all FEs)

load s(t0) = P/Ap. In this first interval loads under a) and b) can 
be introduced together. The second interval (Dt2 = ∞) includes 
changes due to the shrinkage and creep of concrete, and the 
prestressing cables are included in the cross-section (Table 3).
In the second case, when considering the influence of 
contribution of individual effects, the first and the second 
intervals are fictitious (Dt1 = 0 and Dt2 = 0), which makes the 
basis for introduction of loads coming from prestressing and 

Figure 14. Stresses in the cross-section of the girder above the central support [MPa]

Figure 15. Deflections along the beam
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the own weight respectively, while the last (third) interval has 
the duration of (Dt3 = ∞) and includes the viscous deformations 
induced by the shrinkage and creep of concrete (Table 4).
The results of stress for the bay girder’s cross-section above 
the central bridge support are presented as representative 
examples (Figure 14).
After calculation, the values obtained for all variants are identical, 
regardless of whether the problem is solved individually or in 
a common file. Comparison of stress values with the values 
given in [2] reveals minimum deviations, which are the result of 
averaging the geometry of individual FEs and the approximate 
introduction of prestressing force in the structure via parabolic 
cables. These differences amount to less than 4 % and do not 
pose any obstacle to the successful implementation of the 
developed calculation model even in such complex CS’s.
This example shows redistribution of stresses in composite 
cross-sections due to shrinkage and creep of concrete over 
time. While the tension is released from concrete and cables, 
mild reinforcement takes over a significant portion of the 
stress. In this case, the upper reinforcement reaches the limit 
of stresses permitted for smooth steel, which is an increase of 
some 250 %, and so these changes should be taken into account 
at preliminary stages of design.
When it comes to deflection of the bay beam (Figure 15), it can 
be concluded that for the ultimate moment, due to shrinkage 
and creep of concrete, deflection in some parts of the beams 
has been increased by more than 60 % compared to the initial 
elastic state.

8. Conclusion

When calculating complex CSs, it is important to take into 
account the contribution of rheology of concrete and the PS. 

The FEM method developed here, introducing layered rods and 
fictitious loads, enables generalisation of the procedure and the 
conduct of structural calculations as a whole system, including 
statically indeterminate structures, instead of being limited to 
the analysis of selected cross-sections only.
In technological procedures used during realisation of 
structures, where individual layers are introduced into the 
stress activity at different time intervals, changes in the load 
and all other changes can appropriately be included using the 
present calculation algorithm. More complex cases can also 
be analysed, such as any subsequent interventions aimed at 
strengthening and repairing of existing systems, as well as 
cases of exclusion of certain parts (for example, due to corrosion 
of reinforcement). The advantage of this algorithm is reflected 
in the use of computers and development of appropriate 
software enabling quick resolution of problems encountered 
in engineering practice, although it may also be quite useful for 
conducting research in this area of study.
It can be concluded based on the results of the presented 
numerical example that the CS design also requires analysis of 
viscoelastic properties of the material, because stresses and 
deformations in the elements change considerably over time. 
The compressed concrete layer is basically relaxed, while the 
actions are assumed by the steel girder and reinforcement, as 
cross-sectional strains and curvatures increase significantly 
with the passage of time.
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