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Increasing efficiency of iterative application of the force density method

The method for reducing total computational time in iterative application of the force 
density method, intended to attain prescribed force values in cables or prescribed 
lengths of cable segments, is described in the paper. In each step of the iterative 
procedure, linear systems are solved with the accuracy that takes into account 
differences between the calculated and required values. The rule that prevents 
excessively fast increase in accuracy, while maintaining it high enough not to 
compromise the convergence of the iterative process, is proposed.
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Povećanje učinkovitosti iteracijske primjene metode gustoće sila 

U radu je opisan postupak skraćivanja trajanja proračuna pri iteracijskoj primjeni metode 
gustoća sila kojom se u fazi nalaženja oblika prednapete konstrukcije od užadi postižu 
tražene vrijednosti sila ili duljine odsječaka kabela. U svakom se iteracijskom koraku 
linearni sustavi jednadžbi rješavaju s točnošću koja u obzir uzima razlike izračunanih i 
traženih vrijednosti. Predloženo je pravilo koje sprečava prebrzo povećavanje točnosti, 
održavajući je istodobno dovoljno velikom da se konvergencija ne naruši.
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Steigerung der Effizienz der iterativen Anwendung der Kraftdichtemethode

In der Arbeit wird das Verfahren zur Reduzierung der gesamten Berechnungszeit 
bei der iterativen Anwendung der Kraftdichtemethode beschrieben, mit welcher in 
der Phase der Formfindung von vorgespannten Seilkonstruktionen die geforderten 
Kraftwerte oder Kabelabschnittlängen erreicht werden. In jedem Iterationsschritt 
werden die linearen Gleichungssysteme mit einer Genauigkeit gelöst, welche die 
Differenz zwischen den errechneten und geforderten Werten berücksichtigt. Es 
wurde eine Regel vorgeschlagen, die einen zu schnellen Anstieg der Genauigkeit 
verhindert, sie aber auf einer solchen Ebene aufrechterhält, dass die Konvergenz 
nicht beeinträchtigt wird. 
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1. Introduction

Cables have negligible flexural stiffness. Consequently, when 
subjected to forces perpendicular to their axes, they change 
their configuration to enable development of equilibrating 
internal tensile forces. The shape of a flexible cable structure 
is maintained by arranging cables into a net that "describes" 
a surface with a negative Gaussian curvature. Additionally, 
cables should be prestressed for tensile forces to be 
preserved at all load combinations. The shape of cable net 
structures is determined by the laws of statics: designing 
the structural form is a search for the system of forces in 
equilibrium [1, 2]. The form finding process is therefore the 
first stage in the design of prestressed cable nets (Section 
2.1). It is a non–standard, inverse task, since in a "standard" 
design the shape of a structure is already specified so that 
"only" a compatible distribution of internal forces needs to 
be determined.
Furthermore, computational model equations are highly 
nonlinear (Section 2.2). In the force density method, developed 
in the early 1970s for the design of the Olympic Games 
facilities in Munich, the problem was linearized [3-5] (Section 
3.1). However, the concept of force density, as a ratio of one 
static and one geometric magnitude, has arisen from formal 
manipulation of mathematical expressions. Hence it is often 
difficult to select a distribution of force densities that complies 
with aesthetic, functional and structural requirements.
Using the nonlinear force density method, based on the least 
squares method and also introduced in article [3], some 
structural requirements can be satisfied in a systematic way: 
attainment of prescribed force values in selected cables or 
cable segments, attainment of prescribed cable segment 
lengths in the equilibrium net configuration, and attainment of 
prescribed unstrained cable segment lengths. An extension to 
the nonlinear force density method, enabling attainment of the 
prescribed support reactions, and indirectly assigning position 
of selected (free) nodes, is given in reference [6]. Another 
extension, described in [7], enables assignment of coordinates 
(all three, two, or just one) of some or all nodes.
As indicated in references [1, 2], an iterative application of 
the linear force density method enables either partial or 
complete attainment of prescribed force values in cables, 
while in [8] the iterative procedure is extended in order to 
attain prescribed lengths of the equilibrium configuration 
segments (Sections 2.3 and 3.2). An experienced designer can 
satisfy other, usually non-structural, requirements in a series 
of attempts through interactive work. An iterative application 
of the force density method sometimes demands time–
consuming calculations and can therefore be inappropriate 
for interactive work. The objective of our work is to reduce 
duration of iterative computations (Section 3.3, with 
programming implementation in Section 4, and examples in 
Section 5). Initial results of this research were presented at 
the 40th Solid Mechanics Conference [9].

2. Mathematical model for form finding

2.1. Form finding

The notion of form finding for a prestressed cable net implies 
determination of its initial equilibrium configuration, before 
application of service loads and without taking self weight into 
account. The notion of configuration involves both the geometric 
shape and distribution of prestressing forces in cables; in [10] 
the authors use the term "initial equlibrium problem" instead of 
the "form finding problem". A comprehensive review of various 
cable net form finding methods is given in reference [11]. An 
interesting idea involving application of graphical statics and 
reciprocal diagrams, which presupposes interactive work, is 
described in reference [12].

Figure 1. Computational model of a cable net

Taking into account some simplifying assumptions (explained in 
more detail in [8]), cable nets will be modeled as space trusses 
[1,3]: the points in which cables cross each other and where 
they are connected to the ground or to rigid structural elements 
are spherical joints, while cable segments between the crossing 
points are bars pinned at their ends (Figure 1). Bar connecting 
joints i and j will be denoted {i, j}. Joints that are not supports 
will be called free nodes.
Basic variables in the cable net form finding are: disposition of 
cables, positions of their crossing points in space, disposition 
and spatial position of supports, and values of prestressing 
forces in cables or their ratios (adapted from [10] for cable nets). 
The choice of the form finding procedure will depend on which of 
the variables are given and which are unknown. The disposition 
of cables, which determines the disposition and connectivity of 
their crossing points, i.e. the topology of the system of pinned 
bars in the computational model, is almost always given in 
advance. As the shape of the net is an equilibrium configuration 
of prestressing forces in the system of bars, the coordinates 
of free joints are the principal unknowns. Prestressing force 
values can be either given in advance, or obtained as unknowns 
by the conditions of nodal equilibrium or, possibly, by satisfying 
additional kinematic constrains. The shape of the net can be 
varied by changing the ratios of force values. The shape of the 
net can also be influenced by adding/removing supports or by 
altering their positions.
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2.2. Nodal equilibrium equations

Mathematical formulation of the cable net form finding is very 
simple: it all comes to equilibrium equations of free nodes that 
are acted upon only by prestressing forces in connected bars. 
The set of bars connected to the node i will be denoted bi. For 
each free node i, three scalar equilibrium equations, representing 
the vanishing of force projection sums on three coordinate axes, 
can be written as follows:

       (1)

where Si,j denotes the value of the force in connected bar {i, j} 
and  is the length of that bar. Since

 (2)

these equations are nonlinear.

If the net contains n free nodes, the obtained system will have 
3n equations of the form shown in (1). If b is the number of bar 
elements, the number of potential unknowns will be 3n+b, since 
every set consisting of n coordinate triples (xi,yi,zi) and b force 
values Si,j, and satisfying these equations, forms an equilibrium 
configuration. Since equations (1) do not contain coefficients that 
express constitutive relations between cable extensions and 
force values, the form finding problem is a pure static problem.

2.3.  Generalized minimal nets and kinematic 
constrains

Equilibrium equations (1) can be interpreted as a condition for 
the minimum of the function e

 (3)

where N and b denote set of free nodes and set of bars, 
respectively. The nets with specified prestressing force values, 
which satisfy that condition, can be called generalized minimal 
nets. Namely, if the values of all forces are equal, Si,j = S, the 
solution of equations (1) is the shape for which the sum of cable 
lengths is smaller than in any other shape of the net with the 
same topology [1, 2, 8, 13].
The possibility of assigning different force values in different 
cables increases the number of possible cable net forms. For 
example, if forces in other cables stay fixed, the selected cable 
will tighten as its force increases and its length will decrease. 
At the same time, the spatial polygonal line of the cable axis 
straightens and approaches the rectilinear connection of its 
ends (example in Sections 5.1 and 5.2).
To enable the (generalized) minimal configuration with specified 
force values, the sliding of cables one over another during the 
prestressing procedure should not be prevented (Figure 2) [1, 2]. 

Figure 2. Generalized minimal net

However, it may happen that two or more nodes slide along 
a cable into a single point, regardless of the values of forces. 
The unconfined approaching and merging of nodes cannot be 
prevented by increasing the force value in that cable, compared 
to forces in sliding cables.
In our computational model, the sliding along a cable can be 
prevented by specifying lengths of segments between the 
crossing points, i.e. the lengths of bars into which a cable is 
divided. But, if we specify the bar lengths, the force values 
required to accomplish them become the unknowns [8]. 
Using Lagrange multipliers li,j, the specified bar lengths can 
be expressed as kinematic constraints, and so the function e 
becomes

 (4)

where bc is the set of bars with specified length . Since the 
number of Lagrange multipliers li,j is equal to the number of 
unknown force values, the condition for stationary points of 
the function ec is a system with an appropriate number of 
equations.
The application of Newton–Krylov methods in solving the 
system of equations (1) (function e minimum condition), and 
the system of stationarity conditions of function ec , is analysed 
in reference [8]. In the first case, the analysis confirmed the 
well-known fact already described in [2, 14, 15]: the duration 
of calculation depends upon the assumed initial form, and the 
domain of convergence ("basin of attraction") exhibits a highly 
irregular, fractal shape. On the other hand, the problem of 
stationarity of function ec is a saddle point problem, and so the 
duration of calculation is significantly extended, and the domain 
of convergence is reduced. Furthermore, unlike the minimum 
of the convex funtion e, the saddle point is not unique, and so 
the calculation, if it converges, can converge to the solution the 
realisation of which is physically impossible.
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3. Force density method

3.1. Initial version of the linear force density

By specifying ratios

 (5)

for each bar nonlinear equations (1) are linearized: 

   (6)

The force–to–length ratios qi,j are called force densities [3-5].
If instead of force values Si,j force densities qi,j are specified, 
unknowns are force values and free node coordinates, which 
gives b+3n unknowns. Unknown force values and unknown 
nodal coordinates are connected by additional b equations 
(5). But the specified values qi,j are constant coefficients in 
equations (6), and so the system of 3n equilibrium equations is 
decomposed into three independent systems with n unknowns. 
The unknowns of the first, second and third systems are {xk}
k N, {yk}k N and {zk}k N, respectively. The systems have the 
same system matrix, but they differ in vectors on the right–
hand side, since their components are qi,sxs, qi,sys and qi,szs for 
s  S, where S is a set of supports. By obtaining free node 
coordinates, we can calculate bar lengths i,j and thereafter 
force values, since (5) gives Si,j = qi,j i,j.

3.2. Iterated force density method

Each solution of the system (6), for any one of ∞b possible 
distributions of force densities in bars of the net of a given 
topology, is an equilibrium configuration. However, it is difficult 
to predict the force density distribution that will give the 
imagined net shape or the required distribution of prestressing 
forces.
An iterative application of the force density method will be 
called the iterated force density method (IFDM). In that procedure, 
the linear force density method is applied in each step, while 
force densities are determined in a given step based on the 
requirements and results from the preceding step.
To attain the force value  in the bar {i,j}, the force density in 
the bar is calculated in the k-th iteration step according to the 
expression

 (7)
 

where  is the force value calculated in the preceding step. 
Force values can be different in different bars [1, 2]. A special 
case are minimal or geodetic nets where force values are 
distributed uniformly [13]: .

Analogously, the required length  of the bar {i,j} and the 
required distance  of nodes i and j can be attained in the 
equilibrium configuration of a net by calculating the force density 
in the k-th step according to one of the following expressions

 (8)

where  is the bar length/node distance calculated in the 
preceding step [8].
Both the force value in the bar and the bar length cannot be 
assigned at the same time, but it is possible to assign the 
approximate force value and then, after few iteration steps, 
switch over to obtaining the length.
The iteration is terminated when

 i   (9)

where tS and tl are the prescribed tolerances, which can differ 
in different bars. 
Since every solution of equations (6) is an equilibrium configuration, 
the described iterative procedure converges towards the target 
solution through a sequence of equilibrium configurations. If the 
iterative procedure is terminated before the required tolerance is 
achieved, or even if it cannot be achieved, the net obtained is still 
in equilibrium. Another advantage of iterative procedure is that in 
addition to the required force values, the required lengths of cable 
segments can also be obtained without introduction of Lagrange 
multipliers. However, numerical experiments have shown that 
the examples in which force values and lengths of cable segments 
are given demand more iteration steps than the examples with 
an approximately equal number of segments in which only force 
values are prescribed. The differences are however not so large 
compared to Newton–Krylov methods.
It is stated in reference [8] that the described procedure is very 
rapid. This claim needs to be rewritten to be more accurate. The 
procedure is faster than the Newton–Krylov methods, but in the 
initial version, for form finding of cable nets with a large number 
of segments in real time, it takes quite a long time to complete 
if a higher accuracy is needed. A possible solution for speeding 
up this process is shown in the next section.

3.3. Reduction of computation time

Three linear equation systems with equivalent system matrices 
are solved in each step. The LU decomposition, which enables 
simultaneous back–substitution of several right–hand side 
vectors, is therefore a particularly suitable solution method 
[16]. Since these matrices are sparse, a sparse variant of the 
LU decomposition should be used for larger systems [17]. 
Nevertheless, the limited fill–in of the matrices will still occur, and 
our numerical experiments have shown that it can be significant.

or

or
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Iterative procedures for solving linear systems do not require 
any fill–in of system matrices. The group of Krylov procedures 
is very efficient [18] although three systems must be solved 
separately when these procedures are applied. The entire 
procedure of iterative application of the force density method 
will be called the outer loop, while the iterative procedure for 
solving the linear system will be called the inner loop.
The tolerance teq needs to be specified to enable iterative 
solution of linear systems. This tolerance depends on tolerances 
for required bar lengths and bar forces, tℓ and tS, respectively, 
contained in the criteria for the outer loop termination. Lengths 
and force values are functions of nodal coordinates. The error 
expected in the determination of these coordinates is greater 
then teq. Namely, in the condition for termination of an iterative 
procedure, the tolerance teq is compared with the norm of the 
residual, ‖r(k)‖< teq, where k is a step of the inner loop. Since the 
error of the solution and the norm of the residual are related by 
‖e(k)‖= ‖A-1r(k)‖ ≤ ‖A-1‖ ‖r(k)‖, the error of the solution can be up 
to ‖A-1‖ times larger than the residual. In addition, the length 
calculation error can be up to 2√3 times larger than the error 
with which nodal coordinates are determined. Systems (6) should 
therefore be solved at least with the tolerance of

 (10)

where a is an estimate of A-1
 (as such estimates are rather 

crude, there is no need for the factor 2√3).
The application of Krylov methods reduces duration of the outer 
loop significantly. First of all, in an outer loop step, the solutions 
obtained in the preceding step are taken as the first approximations 
of solutions of linear systems. And, more importantly, the idea of 
the Newton–Krylov or, more evocatively called, inexact Newton 
methods, is borrowed. This provides a balance between accuracy 
of the linear system solutions and the amount of computation 
done in a single step of the outer loop [19]. Namely, if the computed 
force values or bar lengths are far from those required, it makes 
sense to solve linear systems (6) only approximately, by reducing 
accuracy with an increase of the deviation from the required 
value. It should be noted that the aforementioned advantage of 
the iterative application of the force density method is thereby 
sacrificed: since linear systems are in almost all steps solved only 
approximately, the obtained configurations, except for those in the 
last steps, are not in an equilibrium.
Therefore the tolerance with which the systems (6) are solved is 
gradually decrease, from the relatively loose initial tolerance tmax to 
the specified tight tolerance teq that provides the final equilibrium 
configuration. If we wish to solve the system in the k-th step of the 
outer loop with the tolerance that reflects "distances" of calculated 
force values and lengths from the required ones, t(k) needs to depend 
on errors  and . Since these errors are not known before the 
systems are solved, we will use values from the preceding step, 

 and . The dependences can be expressed as

  and   (11)

Let’s assume, to begin with, that functions fS and fℓ are linear:

    and     (12)

Also, we will take that the relationship between  and  is 
equal to the relationship between teq and  in the final step of 
the outer loop and, similarly, that the relationship between  
and  is equal to the relationship between teq and :

    and     (13)

Since  and , we can write

   and    (14)

At the end of the outer loop, when  and  reach tS and 
tl, it should be  and . But, it will never be  
or , errors will be either slightly higher or slightly lower 
than the specified tolerances. If errors are smaller than the 
specified tolerances, the condition (9) for the termination of the 
outer loop is satisfied and the system (6) will never be solved 
with the tolerance teq. Therefore, slightly smaller values will be 
used:

  and   (15)

The analysis of examples has shown that the tolerance is 
increasing too rapidly. Therefore, quadratic functions are taken:

  and   (16)

The reduction rate of errors  and  will also be taken 
into account by considering the ratio of these values in two 
consecutive steps [20]:

  and   (17)

where h is the "dumping" that provides additional control.
The tighter of the tolerances  and  should be taken and 
therefore

 (18)

In the "inexact" procedure, the tolerance of the step is 
determined by the greater of the errors  and  . Besides, 
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the tolerance should not be smaller than teq. Therefore, the 
constraint is introduced as follows:

 (19)

We have noticed that in some examples the convergence of 
the outer loop is not uniform: it can happen that  or 

. That is why it should be confirmed that the tolerance 
in k-th step is equal to or smaller than the tolerance of the 
previous step:

 (20)

4. About the computer programme

The genuine programme code in which the calculations were 
conducted is written in programming package SageMath [21]. 
The flow chart of the programme is shown in Figure 3. 
Linear equation systems are solved by functions splu() and 
cg() contained within the programming library SciPy [22] that 
is included in SageMath. Sparse matrices are represented using 
the csc_matrix class (Compressed Sparse Column Matrix) from 
the SciPy library.

5. Examples

5.1. Minimal net with rigid supports

The first example is the net with "rigid" supports: all cables have 
fixed nodes at both ends. The net is spread over a ground–plan 
area [-a,a]2. The heights of supports are given by the expression 

 
 (21)

The net has two families of 23 cables, which gives 23·23=529 
inner nodes, 4·23=92 boundary nodes, and 46·24=1104 bars. 
Inner nodes are free, and so three systems of 529 equations 
with 529 unknowns need to be solved in each iteration step.
Unit force densities are assigned to all bars in the first step. The 
resulting net is shown in Figures 4.a and 4.c. Force values in bars 
range from 1,668 to 2,903.

The minimal net, determined by iterative application of the force 
density method, is shown in Figures 4.b and 4.d. Force densities 
in each step of iterative procedures are calculated according to 

Figure 3. Flow chart for the proposed iterative procedure
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expression (7), where the unit value of i,j is taken for all {i, j} 
(since the shape of the net does not depend on force values, but 
only on their ratios, the same shape is obtained for any positive 

). Final force densities range from 0,090 
to 1,197.
When solving the linear system using the 
sparse LU decomposition, the required 
tolerance tS = 10-4 is achieved after 576 
steps. The same number of steps of the 
outer loops is required to solve the system 
using the conjugate gradient method (CG). 
The tolerance with which linear systems 
have to be solved is specified as teq = 
5×10-7. If zero vectors ( ) are taken 
as initial approximations of solutions, the 
total number of inner steps for all three 
systems is 78258. However, if solutions 
from preceding steps ( ) are 
taken as initial approximations, the total 
number of inner steps is reduced to 34505. 
In the proposed "inexact" procedure, linear 
systems are also solved using conjugate 
gradients (ICG). The tolerance is achieved 
after 557 steps of outer loop with the total 
of 16201 steps of inner loops. In this and 
all other examples, h = 0.025 in (8). Results 
for this example (Ex. 1), as well as for the 
other three examples, are concisely shown 
in Table 1 at the end of this section.

5.2. Different cable forces

The shape of the net can be influenced 
by changing the ratio of force values 
in individual cables. The net with the 
same layout disposition and the same 
topology is shown in Figure 5. In the net 
in Figures 5.a and 5.c, unit force densities 
are assigned to all bars that belong to the 
convex family of cables, while the force 
densities in bars of the concave family of 
cables are equal to one half of the height 
of their supports. In the generalized 
minimal net in Figures 5 b) and d), force 
values in all bars of the concave family of 
cables are equal to one half of the height 
of their supports, while bars of the convex 
family have unit forces. Force densities 
are calculated according to expression 
(7) in the iterative procedure of the form 
finding of the generalized minimal net.
Since the topology of the net is equal to 
the one given in the previous example, 
the number of equations is the same. 

The steps required to achieve tolerance tS = 10-4 in various 
computational procedures, with teq = 5×10-7

 
in CG and in final 

steps of "inexact" procedure, are listed in Table 1, rows Ex. 2.

Figure 4.  Net with "rigid" supports: a) and c) with equal force densities in all bars; b) and d) 
minimal net

Figure 5.  Net with "rigid" supports: a) and c) with equal force densities in bars along individual 
cables; b) and d) generalized minimal net



Građevinar 12/2017

1082 GRAĐEVINAR 69 (2017) 12, 1075-1084

Elizabeta Šamec, Krešimir Fresl, Maja Baniček

5.3. Net with edge cables

Cable net structures are often made with edge cables. Inner 
cables of the net are connected to edge cables, and edge cables 
are, at their end points, connected to "rigid" structural elements. 
The only known coordinates are the coordinates of these few 
supports and so the form finding of edge cables becomes a part 
of the form finding of the entire net.
The net shown in Figure 6 has four edge cables stretched 
between four corner points. Three corners are in the same 
horizontal plane and the fourth one is raised above it. There are 
78 inner cables. The net has 837 free nodes; 76 of them are 
at the edge cables. Systems contain 837 equations with 837 
unknowns.
The force values in edge cables are 
significantly larger than the values in 
inner ones. Still, if the sliding of end joints 
of inner cables along edge cables is not 
prevented, the inner cables will crowd 
together. The problem of joint sliding 
can be prevented by prescribing the 
lengths of bars into which edge cables 
are divided.
Unit force densities in bars of inner 
cables and several times larger force 
densities in bars of edge cables are 
specified in the first step (Figures 6.a 
and 6.c). Since the force values are 
proportional to force densities, the 
resulting values at edge cable bars will 
also be a few times greater than those 
in inner bars.
Then the iterative calculation is carried 
out with specified force values in bars of 
inner cables, and with specified lengths 
of bars of edge cables. These lengths are 
arithmetic means of the lengths of bars 
of each cable obtained in the first step 
(the lengths of 80 bars are specified, 
while the unit force values are given in 
1600 bars).
Force densities in inner bars are 
calculated according to expression 
(7), while those in edge cable bars 
are calculated using expression (8). 
To terminate the outer loop, both 
conditions (9) need to be satisfied, 
where ts = tℓ = 10-4. The inner loop 
tolerance is teq = 5×10-7. The number 
of steps required to achieve given 
tolerances in different computational 
procedures is listed in Table 1, rows Ex. 
3. The resulting net is shown in Figures 
6.b and 6.d.

5.4. Net over octagon

In the final example, the net has nine supports: eight on the 
edges and one inner "high point". Edge cables are stretched 
between the edge supports. The "ridge" and "valley" cables 
are stretched between the "high point" and edge supports. In 
addition to the lengths of edge cable bars, the lengths of bars of 
"ridge" and "valley" cables are also specified. The net contains 
90 cables in total.
As in the previous example, specified bar lengths are arithmetic 
means of the lengths obtained in the first step, in which force 
densities in the corresponding bars were several times larger 
than in other bars (Figures 7.a and 7.b). Lengths are specified for 

Figure 7.  Net over octagon: a) and c) ) specified force densities; b) and d) ) specified force values 
in bars of inner cables and specified lengths of edge, valley and ridge cables

Figure 6.  Net with edge cables: a) and c) specified force densities; b) and d) specified force 
values in bars of inner cables and specified lengths of bars of edge cables
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200 bars, while unit force values are given for other 1520 bars. 
Tolerances that control outer loop are ts = 10-4 and tℓ = 10-3. 
The net has 832 free nodes and, therefore, three systems, each 
containing 832 equations, need to be solved. The tolerance in 
iterative procedures is once again teq = 5×10-7. The resulting net 
is shown in Figures 7 b) and d), while required steps are listed in 
Table 1, rows Ex. 4. 

6. Conclusion

The form finding of prestressed cable structures is usually 
conducted in a series of attempts in which the designer tries to 
meet a set of architectural and structural requirements.
The described iterative application of the force density 
method facilitates attainment of specified force values in bars 
or specified bar lengths, but in some cases the computation 
can be time–consuming and therefore unsuitable for 
interactive work. We believe that the proposed method for 
reducing the computation time will enable integration of 

the force density method and its iterative application in an 
interactive environment for form finding, where the designer 
can change boundary conditions and force values in cables, 
as well as mark the cables whose segment lengths must not 
be changed.
Extensive numerical experiments show that the proposed 
method is almost always efficient and robust, although there are 
cases in which the efficiency strongly depends on constants in 
the proposed termination rule that keeps the accuracy of linear 
solutions high enough not to compromise the convergence of 
the iterative process, but prevents it from to quickly becoming 
unnecessarily high. This rule is not the only possibility, which 
leaves ample room for further research.
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