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An alternative method for analysing buckling of laminated composite beams

In this study, two new functionals are derived based on Gâteaux differential in 
order to analyse buckling of symmetric cross-ply laminated composite straight 
beams. The functional comprises four independent variables, i.e. deflection, rotation, 
shear force and bending moment for Timoshenko beam, and two independent 
variables, deflection and bending moment, for Euler-Bernoulli beam. The application 
possibilities and performance of the proposed mixed finite element formulation are 
presented on several numerical examples.
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Alternativna metoda za analizu izvijanja lameliranih kompozitnih greda 

U radu su primjenom Gâteauxove derivacije izvedena dva nova funkcionala kako bi se 
provela analiza izvijanja simetričnih križno uslojenih ravnih lameliranih kompozitnih 
greda. Funkcional sadrži četiri nezavisne varijable, a to su progib, rotacija, poprečna 
sila i moment savijanja za Timošenkovu gredu, te dvije nezavisne varijable, progib i 
moment savijanja, za Euler-Bernoullijevu gredu. Mogućnost primjene i učinkovitost 
predložene mješovite formulacije konačnih elemenata prikazana je na nekoliko 
numeričkih primjera.

Ključne riječi:
Gâteauxova derivacija, ravne kompozitne grede, mješovita formulacija konačnih elemenata, analiza 
izvijanja, križno uslojeni lamelirani kompozit
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Alternative Methode zur Auswertung der Durchbiegung von lamellierten 
Kompositbalken 

In der Arbeit wurden anhand der Gâteaux-Ableitung zwei neue Funktionale zur Auswertung 
der Durchbiegung von geraden lamellierten Kompositbalken aus Kreuzschichtholz 
abgeleitet. Das Funktional enthält vier unabhängige Variablen: Durchbiegung, Rotation, 
Querkraft und Biegemoment für den Timoshenko-Balken und zwei unabhängige Variablen, 
die Durchbiegung und das Drehmoment, für den Euler-Bernoulli-Balken. Die Möglichkeiten 
der Anwendung und die Effizienz der vorgeschlagenen gemischten Formulierung von 
finiten Elementen wurden anhand von einigen numerischen Beispielen dargestellt. 
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1. Introduction

Composite materials are extensively used in different branches 
of engineering because of their high strength/weight and 
stiffness/weight ratios. Mechanical behaviour of composite 
materials has been of interest to many researchers [1-3]. 
The issue of understanding buckling behaviour of laminated 
structural components has been gaining considerable attention 
in recent times. Buckling analysis of symmetric cross-ply 
laminated composite beams is conducted in this paper. Many 
calculation models can be found in literature for buckling 
analysis of laminated composite beams. Analytical or numerical 
methods have been employed to find appropriate solutions. The 
most frequently applied numerical methods are Rayleigh-Ritz 
and finite element methods.
By using different higher-order shear beam theories, the 
buckling and vibration analysis of cross-ply and angle-ply 
laminated composite beams is conducted in [4] for various 
boundary conditions employing the Ritz method. Adopting 
the dynamic stiffness method, the free vibration and buckling 
behaviour of axially loaded laminated composite beams 
with arbitrary lay-up is studied in [5-7]. Based on the two 
dimensional theory, the free vibration and buckling analysis 
of composite beams with interlayer slip in line is analysed in 
[8]. An exact solution for the post-buckling and free vibrations 
of a symmetrically laminated composite beam with different 
boundary conditions is presented in [9]. Analytical solutions for 
the free vibration and buckling of cross-ply composite beams 
with arbitrary boundary conditions are developed in [10] and 
[11] in conjunction with the state space approach. Based on a 
higher order shear deformation theory that assumes nonlinear 
variation of displacement field, a single layer beam finite 
element model is proposed in [12] for studying the buckling 
behaviour of anisotropic sandwich beams. Analytical solutions 
for static, dynamic and buckling analysis of composite beams 
are presented in [13] based on the Timoshenko beam theory. 
A buckling analysis of simply supported composite laminated 
beams is presented in [14] based on the modified couple stress 
theory by applying the minimum potential energy principle, 
and taking into account Euler-Bernoulli and Timoshenko beam 
theories. By using the method of power series expansion of 
displacement components, natural frequencies and buckling 
stresses of simply supported laminated composite beams 
are evaluated in [15] based on the higher order beam theory. 
Analytical solutions for the free vibration and buckling 
behaviour of laminated composite and sandwich beams are 
developed in [16]. Using the refined shear deformation theory, 
the vibration and buckling analysis of cross-ply composite 
beams is presented in [17] by means of a displacement 
based finite element method. The buckling behaviour of the 
laminated composite beam and flat panels is analysed in [18] 
using the 1D finite element formulation within the framework 
of the Carrera Unified Formulation. Based on the shear 
deformation theory, the vibration and buckling behaviour 

of composite beams with arbitrary lay-ups is studied in [19] 
using a displacement based finite element method. A buckling 
analysis of two-layer composite beams is performed in [20] by 
means of the displacement based finite element method using 
the Reddy’s higher order beam theory.
A considerable research has been conducted on the buckling 
of laminated composite beams. However, to the best of the 
authors’ knowledge, the buckling analysis of laminated 
composite beams using the mixed finite element (MFE) 
method has not as yet been reported. The application of 
an efficient and simple method to the buckling analysis of 
symmetric cross-ply laminated composite straight beams 
will be presented in this study. 
In this research based on the Euler-Bernoulli beam theory and 
Timoshenko beam theory, two new functionals are constructed 
using a systematic procedure based on the Gâteaux differential, 
as a means to analyse the buckling problem of symmetric cross-
ply laminated straight beams. Some advantages of the Gâteaux 
differential approach, first used in [21] to obtain a functional, 
can be presented as follows:
 - All field equations can systematically be enforced to the 

functional
 - Boundary conditions of the problem can easily be obtained
 - Field equations can be checked out with potential test
 - Developed mixed element completely eliminates the shear 

locking phenomenon.

Based on the Gâteaux Differential, free vibration of laminated 
composite curved beams is studied in [22]. In addition, the 
free vibration analysis of cross-ply and angle-ply laminated 
composite beams is conducted in [23, 24]. Furthermore, this 
powerful method has recently been applied in [25] for the 
analysis of cross-ply laminated composite thick plates.
New mixed type finite elements are formulated in this 
study. A Timoshenko beam finite element has two nodes 
and four degrees of freedom per node, while an Euler-
Bernoulli beam finite element has two nodes and two 
degrees of freedom per node. A finite element analysis 
program has been developed, and the buckling analysis 
of symmetric cross-ply laminated composite beams with 
different boundary conditions, lamination variables such 
as ply orientations and stacking sequences, geometrical 
and material properties, is performed using the proposed 
finite element program. The validity of the presented 
MFE formulation is proven by comparing the results with 
literature information. Numerical comparison shows that 
the results of this research agree well with research results 
presented in relevant literature.

2. Field Equations and functional

A symmetric laminated composite straight beam in a Cartesian 
coordinate system, denoted by xyz as shown in Figure 1, is 
considered for a length L, thickness h, and width b. 
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Figure 1. Geometry of symmetric laminated straight beam

Consider a uniformly loaded bar, with positive directions of 
internal forces as shown in Figure 2, where qz is the uniformly 
distributed axial load, N is the axial force, H is the horizontal 
force, and M is the bending moment. 

Figure 2.  a) Initial straight state and buckled state of a bar; b) Free-
body segment of a bar 

Based on the Euler-Bernoulli beam theory assumption, the 
moment equilibrium equation about the upper end of the bar, 
when qz is set to zero, can be obtained as follows,

 (1)

and the bending moment becomes: 

 (2)

where v is the displacement along the y-axis and Dx is the 
bending rigidity of the beam, expressed as follows: 

 (3)

By considering the Timoshenko beam theory, field equations 
can be given in the following form: 

 (4)

 (5)

 (6)

 (7)

where T is the conservative shear force, W is the cross-sectional 
rotation about x-axis and Cy is the shear rigidity of the beam 
given by: 

 (8)

In Eqs. (3) and (8), k represents the number of plies, I is the 
moment of inertia and A is the deformed cross sectional area. 
The element of the transformed reduced stiffness matrix , 
for a ply in its material coordinate system, is obtained as 
follows: 

 (9)

where θ is the angle between the global axis and the local axis 
of each layer, and the value of the angle θ is either 00 or 900 for 
cross-ply laminate. Cij is the ply stiffness and it is given in terms 
of engineering constant of the kth ply as: 

 (10)

 (11)

 (12)

C66 = G12 (13)

where Ei is the Young’s modulus in the ith material direction, Gij 

is the shear modulus of the i-j plane, and uij is the Poisson ratio.
Dynamic boundary conditions are given by Eq. (14), and 
geometric boundary conditions are given by Eq. (15):

 (14)

 (15)
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In Eqs. (14) and (15), the quantities with hat are given at 
the boundary points, while quantities without hat are 
unknowns. 
After the field equations are written in operator form as Q = 
Lu - f, where L represents the coefficient matrix, u represents 
unknown vectors (u = {v, M} for Euler-Bernoulli beams, and 
u = {v, W, T, M} for Timoshenko beams), and f represents the 
load vector. A necessary and sufficient condition for making the 
operator Q a potential is given by [26]. After the potentiality 
requirement is satisfied, the functional corresponds to the field 
equations and can be expressed as:

 (16)

Here, s is a scalar quantity and the parentheses <,> indicate 
the inner product. Considering the field equations of the 
laminated composite straight Euler-Bernoulli beam with 
boundary conditions, the matrix form of the Eq. (16) can be 
given by:

After Eq. (16) is implemented, the following expression is 
derived

After integration and simplification, the explicit form of the 
functional corresponding to the field equations of the laminated 
composite straight Euler-Bernoulli beam is obtained as: 

 (17)

 

where [,] is the inner product defined as . The 
parentheses with subscripts ε and s indicate the geometric and 
the dynamic boundary conditions, respectively. The prime symbol 
(‘) is used to represent the first derivative. The same mathematical 
procedure (i.e., applied for the functional of Euler-Bernoulli beam) 
is repeated for derivation of the functional corresponding to the 
laminated composite straight Timoshenko beams. For the sake of 
simplicity, the mathematical details for generating the functional 
of Timoshenko beams are not given here, but the interested 
reader is referred to [27]. The explicit expression of the functional 
of the laminated composite straight Timoshenko beams can be 
obtained in a similar manner as follows:

 (18)

3. Finite element formulation

If a one dimensional element with a parent shape function is 
used as follows:

 (19)

where the adopted notation is illustrated in Figure 3, and Le 
represents the length of an element (Le = zj - zi), then all unknown 
variables of the functional given by Eq. (17) for Euler-Bernoulli 
beams are expressed in terms of interpolation functions as follows:

v = viYi + vjYj (20)

M = MiYi + MjYj (21)

Figure 3. Two node one-dimensional element

After the functional is extremized with respect to the nodal 
variables, the following element matrix is derived explicitly as 
given by Eq. (22):

 (22)
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All unknown variables of the functional given by Eq. (18) for 
Timoshenko beams are expressed by shape functions as 
follows: 

v = viYi + vjYj (23)

W = WiYi + WjYj (24)

M = MiYi + MjYj (25)

T = TiYi + TjYj (26)

When the functional is extremized with respect to nodal 
variables, the element matrix of Timoshenko beams is obtained 
as:

 (27)

4. Buckling analysis

An alternate form of buckling analysis problem can be given by: 

 (28)

where {F} defines the stress resultant vector, {v} denotes the 
displacement vector, [K] is the system matrix, and [Kg] is the 
geometric matrix of the system. Elimination of {F} from Eq. (28) 
yields the following equation:

 (29)

where Pcr is defined as the critical buckling load and [K*] is 
defined as the reduced system matrix of the problem.

 (30)

The eigenvalues, Pcr
 , for which the determinant of coefficient 

matrix from Eq. (29) is zero, lead to the critical buckling loads. 

5. Numerical examples

Example 1: Composite laminated Euler-Bernoulli beam
A symmetric cross-ply laminated composite beam with 
different number of layers and of equal thickness is considered. 
The material properties can be given by:

E1 = 155 GPa, E2 = 12,1 GPa, u12 = 0,248,G12 = 4,4 GPa

Data related to the beam:
Length: L = 0,25 m 
Width: b = 0,01 m
Thickness of the beam: h = 0,001 m.
The beam is characterized by 20 equal length beam finite 
elements.

Different numerical examples are employed in order to test 
performance of the proposed method. First three modes of 
buckling loads (Newton "N"), Pcr1, Pcr2 and Pcr3 are compared 
with those available in the literature [9] as shown in Tables 
1-3, using different boundary conditions. It can be seen from 
Tables 1-3 that the results of this study agree well with 
literature information, and so the methodology presented 
in this study is considered to be reliable. Comparing Tables 
1-3, the beam with two ends hinged exhibits minimum 

Table 1. Critical buckling loads (in [N]) of symmetric laminated composite beam with two ends hinged

Mode
(00) (900) (00/900/900/00)

Present research Research [9] Present research Research [9] Present research

Pcr1 20.438 20.495 1.595 1.599 18.086

Pcr2 82.261 81.982 6.421 6.399 72.784

Pcr3 186.996 184.460 14.597 14.399 165.447

Mode
(900/00/00/900) (00/900/900/900/900/00) (900/900/00/00/900/900)

Present research Present research Research [9] Present research Research [9]

Pcr1 3.954 14.847 14.896 2.292 2.299

Pcr2 15.901 59.789 59.587 9.230 9.199

Pcr3 36.147 135.913 134.072 20.982 20.698
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critical buckling loads, while the beam with two ends clamped 
exhibits maximum critical buckling load. The buckling loads 
of (00), (00/900/900/00) and (00/900/900/900/900/00) beams 
are very high when compared to (900), (900/00/00/900) and 
(900/900/00/00/900/900) beams. Here, a degree (°) refers to 
layer fibre orientation.

Example 2: Composite laminated Euler-Bernoulli beam
A symmetric laminated cross-ply composite beam with different 
number of layers of equal thickness is considered. 

The material properties can be given by:
E1/E2 = 25, E3 = E2, G12 = G13 = 0,5E2, G23 = 0,2E2, u12 = 0,25.

Data related to the beam:
Length: L = 10 m 
Width: b = 1 m
Thickness of the beam: h = 1 m. 

The beam is divided into 20 finite elements of equal length. 
In this example, the dimensionless critical buckling load of 

Mode
(00) (900) (00/900/900/00)

Present research Research [9] Present research Research [9] Present research

Pcr1 41.899 41.928 3.271 3.273 37.077

Pcr2 124.88 123.933 9.748 9.674 110.483

Pcr3 251.869 246.912 19.661 19.275 222.844

Mode
(900/00/00/900) (00/900/900/900/900/00) (900/900/00/00/900/900)

Present research Present research Research [9] Present research Research [9]

Pcr1 8.103 30.445 30.475 4.700 4.704

Pcr2 24.139 90.761 90.078 14.012 13.906

Pcr3 48.687 183.064 179.464 28.262 27.706

Mode
(00) (900) (00/900/900/00)

Present research Research [9] Present research Research [9] Present research

Pcr1 82.266 81.982 6.421 6.399 72.776

Pcr2 169.733 167.715 13.249 13.092 150.173

Pcr3 337.227 327.929 26.325 25.599 298.366

Mode
(900/00/00/900) (00/900/900/900/900/00) (900/900/00/00/900/900)

Present research Present research istraživanje [9] Present research Research [9]

Pcr1 15.903 59.777 59.587 9.228 9.199

Pcr2 32.81 123.364 121.901 19.045 18.819

Pcr3 65.187 245.105 238.350 37.840 36.797

Table 2. Critical buckling loads (in [N]) of symmetric laminated composite beam with two ends clamped

Table 3. Critical buckling loads (in [N]) of symmetric laminated composite beam with one end clamped and another end hinged

Mode
(00) (900) (00/900/900/00)

Present research Research [2] Present research Research [2] Present research Research [2]

cr1P 20.580 20.562 0.824 0.822 18.142 18.127

cr2P 82.923 - 3.317 - 72.974 -

cr3P 188.504 - 7.540 - 165.884 -

Mode
(900/00/00/900) (00/900/900/900/900/00) (900/900/00/00/900/900)

Present research Research [2] Present research Present research

cr1P 3.293 3.296 14.735 6.690

cr2P 13.267 - 59.337 26.905

cr3P 30.160 - 134.885 61.159

Table 4. Dimensionless critical buckling load (Pcr) of symmetric laminated beam with H-H
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Different materials are considered in Table 7 to study the effect 
of material properties on critical buckling load of the first three 
mode of composite laminated beams. 
Dimensionless critical buckling loads of composite laminated 
Euler-Bernoulli beams with (00/900/900/00) lamination are 
presented in Table 8. 

Table 7. Material properties

the first three mode are compared with those available in the 
literature [2]. The dimensionless equation of critical buckling 
load is: 

 (31)

Tables 4 to 6 present dimensionless critical buckling loads for 
hinged-hinged (H-H), clamped-clamped (C-C) and clamped-free 
(C-F) boundary conditions. Six lamination types are presented. 
As seen in the tables, the present model yielded results that in 
good agreement with the results given in [2]. 

Example 3- Composite laminated Euler-Bernoulli beam
In this example, three symmetric cross-ply laminated composite 
beams with four layers (00/900/900/00) and of equal thickness 
are considered. The cross sectional properties of the beams 
with two ends hinged are given as follows: the length of the 
beam is L = 10 m, the width of the beam is b = 1 m and the 
thickness of the beam is h = 1 m.

Mode
(00) (900) (00/900/900/00)

Present research Research [2] Present research Research [2] Present research Research [2]

cr1P 82.904 82.247 3.317 3.290 72.989 72.507

cr2P 171.096 - 6.844 - 150.57 -

cr3P 339.941 - 13.597 - 299.153 -

Mode
(900/00/00/900) (00/900/900/900/900/00) (900/900/00/00/900/900)

Present research Research [2] Present research Present research

cr1P 13.265 13.183 59.335 26.905

cr2P 27.376 - 122.434 55.513

cr3P 54.391 - 243.251 110.293

Mode
(00) (900) (00/900/900/00)

Present research Research [2] Present research Research [2] Present research Research [2]

cr1P 5.134 5.140 0.206 0.205 4.505 4.532

cr2P 46.45 - 1.859 - 40.913 -

cr3P 130.161 - 5.206 - 114.554 -

Mode
(900/00/00/900) (00/900/900/900/900/00) (900/900/00/00/900/900)

Present research Research [2] Present research Present research

cr1P 0.822 0.824 3.671 1.675

cr2P 7.433 - 33.239 15.084

cr3P 20.825 - 93.139 42.233

Table 5. Dimensionless critical buckling load (Pcr) of symmetric laminated beam with C-C 

Table 6. Dimensionless critical buckling load (Pcr) of symmetric laminated beam with C-F

E1 [GPa] E2 [GPa] G12 [GPa] G23 [GPa] u12

Graphite 
epoxy
(Grap)

181 10.3 7.17 3.433 0.28

Kevlar epoxy
(Kev) 76 5.56 2.3 1.618 0.34
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Table 8.  Dimensionless critical buckling load (Pcr) of symmetric cross-
ply laminated Euler-Bernoulli beam (00/900/900/00) for 
different material properties

It can be seen in Table 8 that the symmetric cross-ply laminated 
beam (00 Graphite/900 Kevlar/900 Kevlar/00 Graphite) exhibits 
the maximum critical buckling load whereas the beam (00 
Kevlar/900 Kevlar/900 Kevlar/00 Kevlar) exhibits the minimum 
critical buckling load.

Example 4:Composite laminated Timoshenko beam
In this example, cross-ply laminated Timoshenko beams with 
(00), (900) and (900/00/00/900) lamination are considered. The 
material properties are as follows:

E1/E2 = 25, E2 = E3, G12 = G13 = 0,5E2, G23 = 0,2E2, u12 = 0,25. 

Data related to the beam:
Length: L = 10 m 
Width: b = 1 m
Thickness of the beam: h = 1 m. 
The beam is characterized by 20 equal length beam finite 
elements. 

This example is considered to test the method proposed in 
this research for Timoshenko beam. Dimensionless critical 
buckling loads of the symmetric cross-ply laminated beam 
with different boundary conditions are compared with those 
available in the literature. The comparison of results is given in 
Table 9. It can be seen from Table 9 that the results of this study 
agree well with literature information, and so the methodology 
presented in this study is considered reliable. The beam with 
one end clamped and another end free exhibits the minimum 
critical buckling load as compared to the boundary conditions 
C-C and H-H.

Example 5: Composite laminated Timoshenko beam
Dimensionless critical buckling load of a symmetric cross-ply 
laminated beam (00/900/00) is considered in this example for 

different length-to-thickness ratios L/h = 5 and L/h = 10. The 
beam is divided into 20 finite elements of equal length. The 
corresponding material parameters are:

E1/E2 = 40, E3 = E2, G12 = G13 = 0,6E2, G23 = 0,5E2, u12 = 0,25. 

Dimensionless critical buckling loads of the cross-ply laminated 
beam with different boundary conditions are compared to 
[11] as presented in Table 10. It can be seen in Table 10 that 
the results obtained in this study show good agreement with 
literature. In addition, the critical buckling load of the laminated 
beam increases with an increase in the length-to-thickness 
ratio as expected. Furthermore, the beam with C-F exhibits 
the minimum critical buckling load whereas the beam with C-C 
exhibits the maximum critical buckling load.

Table 10.  Dimensionless critical buckling load (Pcr) of symmetric 
cross-ply laminated beam (00/900/00) for different length-
to-thickness ratios

6. Conclusion

The buckling analysis of symmetric cross-ply laminated composite 
beams is carried out using the MFE method. Two different beam 
theories, i.e. the composite laminated Euler-Bernoulli beam 
theory and the composite laminated Timoshenko beam theory, 
are considered. Two new functionals for the buckling analysis 
of symmetric cross-ply laminated composite Euler-Bernoulli 
and Timoshenko beams are established based on the Gâteaux 
differential approach. Employing the developed finite element 
formulation, symmetric cross-ply laminated composite beams 

Kev/Kev/Kev/Kev Kev/Grap/Grap/Kev Grap/Kev/Kev/Grap

üP 159.547 161.049 377.015

cr2P 641.419 647.066 1518.304

cr3P 1458.035 1470.891 3451.526

L/h Boundary 
condition

(00) (900) (900/00/00/900)

Present research Research [2] Present research Research [2] Present research Research [2]

10

H-H 13,739 13,768 0,782 0,784 11,889 11,179

C-C 27,359 27,656 2,727 2,747 20,940 20,800

C-F 4,666 4,576 0,267 0,203 4,770 3,922

Table 9. Dimensionless critical buckling load (Pcr) of symmetric cross-ply laminated beam L/h = 10 with different boundary conditions

L/h Boundary 
condition

(00/900/00)

Present research Research [11]

5

 H-H 8.588 8.606

 C-H 9.386 9.412

C-C 10.752 10.802

 C-F 4.821 4.747

10

 H-H 18.932 18.989

 C-H 25.840 25.940

 C-C 34.845 34.426

 C-F 6.793 6.797
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including different number of layers are considered as examples 
for numerical evaluation of the effects of the beam theories, 
variation of geometrical and material parameters, and boundary 
conditions, on the critical buckling load. Comparison between 
results obtained in this study and literature results reveals that 
they are in good agreement. Results given in numerical examples 
point to the validity and efficiency of the presented formulation. 
The following main conclusions may be drawn:

 - Overestimation of beam stiffness with the Euler-Bernoulli 
beam theory leads to the critical buckling load being larger 
when compared to the Timoshenko beam theory.

 - Considering the same types of lamination (00), (900) 
and (900/00/00/900), it has been demonstrated that the 
laminated Euler-Bernoulli and Timoshenko beams with two 
ends clamped have the maximum critical buckling load.

 - The difference between the critical buckling loads of the 
Euler-Bernoulli and Timoshenko beam theories decreases 
with an increase in the length to thickness ratio.

 - The critical buckling loads of the symmetric laminated 
Euler-Bernoulli beam and Timoshenko beam differ from one 
another, and the difference between the values predicted 
by the two theories becomes more significant for the beam 
with (900/00/00/900) lamination.

 - Considering four lamination types, i.e. (00/900/900/00), 
(00/900/900/900/900/00), (900/00/00/900), and 
(900/900/00/00/900/900), it has been proven that the 
stiffness of the symmetric laminated Euler-Bernoulli beam 
with (00/900/900/00) or (00/900/900/900/900/00) lamination 
is higher than (900/00/00/900) or (900/900/00/00/900/900) 
lamination, respectively.

 - The MFE formulation is developed in this study for analysing 
buckling of symmetric cross-ply laminated composite 
straight Euler-Bernoulli and Timoshenko beams, utilizing 
new functionals through a systematic procedure based on 
the Gâteaux differential. 

 - The Gâteaux differential approach is reliable and very 
simple to implement, and its results are reasonably 
accurate for engineering purposes (i.e. this approach is 
capable of predicting displacements and internal forces 
directly without requiring mathematical operations). 
The same approach can be applied for the buckling and 
vibration analysis of cross-ply and/or angle-ply laminated 
composite beams by considering higher-order shear 
deformation theories. Some of these problems are 
currently under study in accordance with the methodology 
presented in the paper.
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