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Method of incompatible modes – overview and application

The finite-element method has been in use in the engineering community for over 
50 years, a period during which it has been constantly improved. One important 
improvement is the addition of required displacement modes ("incompatible modes") 
into the element’s shape functions. Such addition violates the continuity condition, 
and has to be realised according to certain rules if convergence is to be achieved. 
The benefits are shown in the element’s behaviour under unfavourable loading 
conditions, and in the possibility of a simplified treatment of strain or displacement 
discontinuities. 
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Pregledni rad
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Metoda nekompatibilnih modova – pregled i primjena 

Metoda konačnih elemenata koristi se u inženjerskoj zajednici već više od 50 godina i 
za to je vrijeme stalno poboljšavana. Jedno od bitnih poboljšanja odnosi se na uvođenje 
dodatnih funkcija za opisivanje pomaka ("nekompatibilnih modova") u interpolacije 
elemenata. Takvo dodavanje ne zadovoljava uvjet kontinuiteta i mora biti provedeno uz 
određene uvjete kako bi se postigla konvergencija. Prednosti korištenja ove metode jesu 
poboljšano ponašanje elemenata u nepovoljnim uvjetima opterećenja te mogućnost 
jednostavnog uzimanja u obzir diskontinuiteta u polju pomaka ili deformacija.

Ključne riječi:
konačni element, funkcija oblika, analiza savijanja, analiza diskontinuiteta, statička kondenzacija

Übersichtsarbeit
Ivica Kožar, Tea Rukavina, Adnan Ibrahimbegović

Methode der inkompatiblen modi – übersicht und anwendung 

Die Finite-Elemente-Methode wird in der Ingenieurgemeinschaft seit mehr als 50 
Jahre angewendet, und wurde während dieser Zeit ständig verbessert. Eines der 
wichtigsten Verbesserungen bezieht sich auf die Einführung zusätzlicher Funktionen 
für die Beschreibung der Verschiebung ("inkompatible Modi") bei der Interpolation 
der Elemente. Eine solche Ergänzung erfüllt nicht die Bedingung der Kontinuität und 
muss unter bestimmten Bedingungen durchgeführt werden, um eine Konvergenz 
zu erreichen. Die Vorteile der Anwendung dieser Methode liegen im verbesserten 
Verhalten der Elemente unter ungünstigen Belastungsbedingungen sowie der 
Möglichkeit einer einfachen Berücksichtigung der Diskontinuität im Bereich der 
Verschiebung oder Verformung. 

Schlüsselwörter:
Finite-Elemente, Formfunktion, Biegeanalyse, Diskontinuitätsanalyse, statische Kondensation
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1. Introduction

It was observed already at initial stages of implementation that 
the greatest problem with finite elements with low number of 
nodes is their sensitivity to "locking" (e.g., see [1]). The remedy 
has been sought through enhancement of the displacement or 
strain element field, and the method was called "the method of 
incompatible modes" or simply "incompatible modes".
The method of incompatible modes was introduced in 1973 by 
Wilson et al. [2, 3] as an improvement of the low-order plane and 
solid elements in bending problems. It was observed through 
eigenvector analysis that low-order elements can not describe 
bending behaviour simply because they lack the necessary shape 
functions, and so the lacking displacement shapes were added 
artificially. Although simple addition of shape functions violates the 
continuity condition, the convergence can still be achieved if some 
requirements are met [4]. Incompatible shape functions are not 
unique, i.e. they assume various forms in different problems (small 
displacements, large displacements, large rotations, incompressible 
material, etc.). Many well performing incompatible shape functions 
belong to the class of mixed formulation elements [5].
It was established that this method has some additional 
benefits, such as an improved resistance to mesh distortions and 
improved behaviour of elements when nearly incompressible 
materials are analysed [6]. Also, incompatible modes are not 
only applied to improve the elements" behaviour, i.e. they 
can also be used to formulate strain or displacement based 
on constitutive laws (e.g., damage evolution) on the element 
level. In combination with the operator split technique (e.g., 
see [7]) that enables separate solution of evolution equations 
and equilibrium equations on the local and global levels, 
this drastically reduces demand for secondary storage. The 
application of incompatible modes to the geometrically non-
linear problem of large rotations can be found in [8, 9]. Practical 
application of enhanced elements is possible in various areas, 
such as in the design of walls with openings [10].
The application of incompatible modes in strain and displacement 
discontinuities in 1D-problems is described in Section 2. The 
application of incompatible modes to the original problem of 
bending, where the behaviour of 2D and 3D quadrilateral elements 
in a structure loaded in bending has been improved, is described in 
Section 3.

2. Incompatible mode method in 1D

2.1. Mixed variational formulation

The standard finite element solution is usually constructed 
from the displacement type variational formulation, where 
the weak form is obtained only from equilibrium equation. If 
we want to enrich the strain field and introduce the enhanced 
approximation into the finite element formulation, we have 
to construct the weak form from all three sets of equations: 
kinematic, constitutive and equilibrium equations. This is called 

the mixed or Hu-Washizu variational formulation, where the 
displacement field u(x), the strain field ε(x), and the stress 
field σ(x), are independent of one another [7]. ZTo be able to 
derive the method of incompatible modes, one should start by 
enriching the strain field in the following way:

 (1)

where the first term is the standard strain, and the second term 
is the enhanced or incompatible strain.
In the weak form, equations no longer have to be satisfied 
at each point of the domain Ω, but rather in an integral sense 
only. It is obtained by multiplying the equation by an arbitrary 
function w, also known as the weighting function, and then 
by integrating the product over the whole domain. For the 
equilibrium equation we get:

 (2)

which, after integrating by parts, assumes the following form:

 (3)

Here, w(x) represents the virtual displacement field that has to 
vanish on the boundary, thus satisfying the condition w(x) = 0 
on Γu. In a similar manner, the weak form of the constitutive 
equation is defined in the space of the virtual strain field γ(x) for 
the case of linear elasticity:

 (4)

The weak form of the kinematic equation is constructed in the 
space of the virtual stress field τ(x):

 (5)

Eqs. (3), (4) and (5) constitute the mixed weak form that is 
equivalent to the Hu-Washizu functional [11] for a 1D case:

 (6)

The virtual strain field and the virtual stress field do not have 
to satisfy the boundary condition imposed on the virtual 
displacement field. Also, they do not have to be continuous, but 
square integrable functions only [7].
The enriched virtual strain field is defined in the same manner 
as the real strain field in Eq. (1):

 (7)

By introducing the enriched approximations from Eqs. (1) and 
(7) into Eqs. (4) and (5), the following equations are obtained:

 (8)
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 (9)

Furthermore, Eq. (8) can be divided into two equations:

 (10)

 (11)

From Eq. (10), it follows:

 (12)

and by introducing it into Eq. (3), we obtain:

 (13)

Eqs. (9), (11) and (13) constitute the weak form for the enriched 
strain field obtained using the mixed formulation. They are 
listed here:

 (14)

2.2. Finite element implementation

A 2-node truss bar finite element of length L and cross-sectional 
area A is considered, with an axial degree of freedom ui at every 
node (see Figure 1).

Figure 1. 2-node truss bar finite element with its shape functions

By introducing the finite element approximations, the enriched 
displacement field can be represented as the sum of the 
compatible and incompatible part:

 (15)

where N are linear shape functions, u is the nodal displacement 
vector, M(x) is the incompatible mode function, and α is the 

incompatible mode parameter. The incompatible mode function 
M(x) is chosen according to the characteristics of the problem to 
be solved, as will be shown through examples in the following 
Sections. 
The enriched strain field in Eq. (1) can be computed as the 
derivative of Eq. (15):

 (16)

where matrix B contains the shape functions" derivatives, and 
G(x) is the derivative of the incompatible mode function.
Besides the convergence conditions that have to be met by 
standard finite elements, several additional conditions have to 
be solved by enhanced elements with incompatible modes [7]:
The incompatible strain field should be independent from the 
compatible strain field, and so their shape functions must not 
belong to the same space:

 Ø (17)

Stress parameters should be orthogonal to the incompatible 
mode parameters, to that the presence of stress in the 
approximation can be avoided. For this reason, all the terms in 
Eqs. (14) that contain stress parameters should vanish:

 (18)

Any incompatible strain should be orthogonal to any constant 
stress and no work should result from the coupling between 
these two fields. This ensures convergence in the spirit of the 
patch test.  It has been shown in [3] that for a constant stress σ, 
it follows from Eqs. (18):

    (19)

By introducing the finite element approximations for 
displacements and strains into the mixed formulation from Eqs. 
(14), a system of equations is obtained:

 (20)

When we introduce the substitutions:

 (21)
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Eqs. (20) become:

 (22)

and that can be written in matrix form:

 (23)

Now the static condensation can be performed to reduce the 
stiffness matrix to the same size as the nodal displacement 
vector. From the second equation in Eqs. (22), it follows: 

 (24)

When Eq. (24) is introduced into the first equation in Eqs. (22), 
the following is obtained: 

 (25)

where the first term represents the condensed stiffness matrix:

 (26)

The following can finally be written:

 (27)

The method of incompatible modes derived in this section 
can be applied to a wide range of problems in mechanics. 
Two potential applications in a 1D setting will be shown in the 
following two subsections: the first one is a bar composed of 
two different materials, and the second one is a bar with an 
embedded discontinuity that simulates the crack opening.

2.3. Examples

2.3.1. Strain discontinuity for a heterogeneous bar

Consider a bar of length L composed of two different materials, 
where the interface between them is located in the middle of the 
element  = L/2.. Elastic moduli of the left and right part of the bar 
are marked as E1 and E2, such that E1 > E2. The bar is clamped at 
the left end, with an imposed force F on the right end, as can be 
seen in Figure 2. The following geometric and material properties 
are used: E1 = 1000, E2 = 500, L = 1, A = 1, and F = 300.

Figure 2. Heterogeneous bar composed of two different materials

Since the bar is composed of two different materials, there is a 
discontinuity in the strain field just in the middle of the element. 
The strain discontinuity is often called weak discontinuity, as 
opposed to the displacement discontinuity that is called strong 
discontinuity, and which will be explored in the next section. For 
an example where both strong and weak discontinuities have 
been implemented in one element see [12]. This example of a 
heterogeneous bar can easily be solved using two standard truss 
bar finite elements with different material properties. The values 
of nodal displacements can be obtained by simple calculation:

;   (28)

Now, the same example can be solved using the method of 
incompatible modes described in the previous section. In this 
case, a single enhanced finite element is used.

Figure 3.  Incompatible mode function and its derivative for strain 
discontinuity modelling

The strain discontinuity is taken into account by choosing an 
appropriate incompatible mode function M(x), as shown in Figure 3:

 (29)

The derivative of M(x) is then:

 (30)

Eqs. (21) have to be computed by dividing the domain Ω into two 
subdomains, Ω1 ∈ [0, L/2] where E = E1 and Ω2 ∈ [L/2, L] in which 
E = E2:

 (31)
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After introduction of shape function values, Eqs. (31) become:

 (31a)

from which the condensed stiffness matrix defined in Eq. (26) is 
obtained as follows:

 (31b)

After taking into account boundary conditions, and after 
introduction of geometric and material parameters, Eq. (27) is 
solved to obtain displacement of the free end of the bar:

 (32)

To calculate the displacement at the discontinuity, it is first 
necessary to recover the value of the displacement jump α. This 
is done via Eq. (24), from which we compute::

α = 0.075 (33)

The displacement at the discontinuity can be now calculated 
from Eq. (15):

 (34)

It has been shown here that, by using one finite element 
enhanced by an incompatible mode, it is possible to obtain the 
results similar to the ones already obtained from the calculation 
with two standard finite elements, given in Eq. (28).

2.3.2.  Displacement discontinuity for localized failure 
modelling

The aim of this section is to present application of the method 
of incompatible modes to a softening damage model that is 
capable of representing failure of concrete in tension. When the 
limit strength is reached, a macro crack starts to develop, and so 
the softening occurs immediately after the linear elastic phase.
There are several approaches for implementing softening into 
the model.  The one described in [7, 12] is selected for the 
purposes of this paper. In the proposed model, an embedded 
strong discontinuity is introduced as a localized displacement 
jump that simulates the crack opening in the middle of the 
element. With this localization limiter, mesh-dependency is 
eliminated. There are other works in which a similar framework 
is used to describe the softening phase, either for damage, 

plasticity or coupled plasticity-damage models (e.g., in [14-17]). 
In damage, strain goes to zero after complete unloading, and 
unlike plasticity, there is no residual plastic strain.
The formulation for the simplest 1D truss bar finite element will 
be derived. The displacement discontinuity has to be introduced 
into kinematic equations, and it is implemented using the 
incompatible mode method.
To simulate the crack opening, a displacement jump α is 
introduced in the middle of the element  = L/2. Since we are 
dealing with a truss bar finite element that has axial degrees of 
freedom only, this displacement jump can describe mode I crack 
opening only.

Figure 4.  Incompatible mode function and its derivative for 
displacement discontinuity modelling

This localization can be introduced into the finite element 
formulation in the spirit of the incompatible mode method, as a 
displacement discontinuity. In this case, the incompatible mode 
function M(x) shown in Figure 4 is chosen:

 (35)

Here, the derivative of M(x) is defined as follows:

 (36)

where  = -1/L, and δ  is the Dirac delta function representing 
the singular part of the strain field:

 (37)

By introducing the enriched strain field approximation from Eq. 
(16) into Hooke"s law, the stress field of the bulk material is 
obtained, as defined in [0,  ∪ ,L], since δ  = 0 for x ≠ :

 (38)

As behaviour at the discontinuity is inelastic, a 1D softening 
damage model is introduced. The energy dissipation is described 

otherwise
∞, x = x
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by the traction-separation cohesive law (see Figure 5), defined 
by the following equation:

 (39)

where  is the compliance modulus at the discontinuity that can 
take values from zero to infinity.

Figure 5. Cohesive law at the discontinuity

The damage function  checks if the value of traction at the 
discontinuity is admissible or not: 

 (40)

In Eq. (40), σf is the elasticity limit, denoting the stress at which 
the first cracking occurs, and  is the stress-like softening 
variable that controls damage defined by:

 (41)

for linear softening. Here,   is the softening modulus, and 
 is the displacement-like softening variable that measures 

accumulation of damage.
The evolution of damage can be described by the softening 
damage multiplier  that takes non-negative values only. The 
evolution equations for internal variables of this model are then:

; ;  (42)

and the loading/unloading conditions are listed here:

;  ;   (43)

The damage consistency condition enforces the stress 
admissibility at subsequent time steps:

 (44)

In practice, this means that there are two admissible cases:

Elastic case:  < 0,  = 0

Damage case:  = 0,  > 0

The fracture energy Gf is equal to the area below the softening 
part of the response in Figure 6, with the slope equal to the 
softening modulus  :

 (45)

Figure 6. Fracture energy Gf

Numerical implementation of the presented model is quite 
complex, so that just a brief overview will be given in this paper. 
For a detailed and comprehensive description, please refer to [13]. 
Since evolution equations are defined locally, at the element 
level (at a Gauss quadrature point), and the equilibrium 
equations are defined globally, for the whole finite element 
mesh, the operator split methodology [7] will be used to attain 
computational efficiency. The computation is divided into two 
phases: local, where evolution equations of internal variables are 
considered, and global, where equilibrium equations are solved. 
The incremental and iterative Newton-Raphson procedure is 
used to find an approximate solution at each time step, while 
the implicit Backward Euler method is used to integrate the 
evolution equations.
In the local phase, the first step is the elastic trial step where 
the admissibility of the traction at the discontinuity is checked, 
as shown in Eq. (40). If  ≤ 0,, the values are admissible and the 
step is indeed elastic, and if  > 0,the current step is not elastic 
and a correction must be made since the element has entered 
the softening phase. This is done by computing the positive 
value of the damage multiplier , and by updating the softening 
variables  and  and the displacement jump α. Once the final 
values of internal variables are obtained, the global phase of the 
computation is initiated.
In the global phase, the check is made to determine if the 
equilibrium equations are satisfied within a chosen tolerance.  If 
that is not the case, a new iterative sweep must be conducted 
to compute the updated values of nodal displacements. The 
system of equations to be solved is of the form as presented in 
Eq. (23), where the matrices K, F and H are the same as in Eqs. 
(21), with an additional term in H related to the traction at the 
discontinuity: 

 (46)
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 (47)

where ξ, η ∈ [-1,1] are isoparametric coordinates Ni (ξ,η) are 
shape functions and xi, yi are nodal coordinates, i = (1,2,3,4), as 
presented in Figure 9.

Figure 9. Isoparametric Q4 element

Displacements u and v are interpolated in the same manner

 (48)

where ui, vi are nodal displacements, i = (1,2,3,4).
The geometry and displacement shape functions are equal for 
isoparametric finite elements. Isoparametric quadrilateral 2D 
element shape functions, in matrix notation, are

 (49)

The chosen shape functions result in element eigenvectors as 
depicted in Figure 10 (only two are shown as the other two are 
similar).

Figure 10. Characteristic Q4 element eigenvectors

A finite element computer code has been developed in 
Mathematica [18] and FEAP [19] to implement and validate the 
model. The chosen example is a cantilever bar clamped at the 
left-hand side, with the displacement  imposed at the right-
hand side (see Figure 7). The bar is discretized by two finite 
elements, where the material model for element 1 is softening 
damage, while it is linear elasticity for element 2. The geometric 
and material properties used in this example are: E = 1000, σf 
= 150,   = -200, L = 1 and A = 1. The imposed displacement is 
equal to  = 0.75.

Figure 7. Cantilever bar with imposed displacement

The global response of the structure is shown in Figure 8. The 
behaviour of the bar is linear elastic until the elasticity limit 
is reached. Then the softening starts and the crack opens 
in the middle of element 1. That means that all the stress is 
concentrated at the discontinuity, while the bulk of the material 
is unloading. If we unload the bar, the diagram goes back to 
zero, showing the typical behaviour of damage models. It can be 
seen that the unloading and the reloading follow the same path 
and, in the end, the bar reaches complete failure, σ = 0.

Figure 8.  Force-displacement diagram with two loading-unloading 
cycles

3. Incompatible mode method in 2D and 3D

3.1. 2D finite element

3.1.1. Formulation of Q4 element

The formulation of the isoparametric quadrilateral 2D element 
is well known and one of many finite element references can be 
consulted in this respect, e.g., [4]. The geometry of the element 
is represented as follows
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The relation between strains and displacements is as usual, 
and for a 2D plain stress / plane strain problem it reads as 
follows

 (50)

with matrix B being defined as

 i = 1, ..., 4 (51)

The shape functions Ni (ξ,η) depend on isoparametric 
coordinates ξ, η, and the derivatives are obtained by applying 
the chain rule for derivatives of composite functions

 (52)

where J is the Jacobian matrix

 i = 1, ..., 4 (53)

The required partial derivatives of shape functions over global 
coordinates are finally

 (54)

In the case of small displacements and linear elasticity, the 
principle of minimum potential energy can be applied, and so 
the element stiffness matrix and the consistent load vector 
read

;  (55)

and the structure equilibrium equation is then K u – f = 0. In 
Eq. (55), t is the element thickness, D is the elasticity tensor, 
and q is the surface load. Note: in the case where load is not 
applied on the element surface but on the element edge, the 
integral is over the line (the edge) and the shape matrix N is 
not complete.
We would like to transform our integrals into isoparametric 
coordinates, and so a change of variables is necessary

 (56)

and the stiffness matrix now reads

 (57)

The actual integration is carried out numerically, i.e., applying 
the Gauss integration rule. In that case the integral is replaced 
with summation

 (58)

 (59)

where m, n represent the number of integration points along 
each isoparametric coordinate within the element, wm, wn are 
weighting coefficients and ξm, ηn are coordinates of the Gauss 
integration points. 

3.1.2 Addition of incompatible modes

Figure 10 shows that the described Q4 element cannot describe 
bending very well (when the opposite sides rotate as in bending, 
the other two remain straight and not curved and so the spurious 
shear stress develops making the element unrealistically stiff). 
This might be compensated with the addition of the missing 
displacements of quadratic type

 i = 1, ..., 4; j = 1, ..., 2 (60)

where α1, α2 are the incompatible mode parameters to be 
determined, and the incompatible modes shape functions are 
M1 = 1 – ξ2 and  M2 = 1 – η2. Displacements in the direction 
ξ corresponding to the newly added functions (incompatible 
modes) are shown in Figure 11 (red crosses represent internal 
element points so the change in "density" is visible).

Figure 11.  Characteristic Q4 element eigenvectors after addition of 
incompatible modes
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The strain-displacement matrix corresponding to the incompatible 
modes is formulated so that the patch test condition from Eq. 
(19) is satisfied, where G for the Q4 element is

     j = 1, ..., 2 (61)

The complete B matrix with the added incompatible modes is 
now Bm = [B G], and the stiffness matrix formulation proceeds 
as usual, with B matrix replaced by Bm matrix

 (62)

In this case, the displacement vector u and the external force 
vector also have to be augmented with the incompatible mode 
parameters α, and so we obtain

   (63)

We now have a system of equations like Eq. (23), that reads

 (64)

The thus formed new element is named Q6.

3.1.3. Example

The behaviour of the new Q6 element can be observed in the 
example of a cantilever beam loaded in bending. Figure 12 shows 
that there is a force and a moment loading. This is not a real 
patch test, however. It can be seen in [9] that both 2D and 3D 
incompatible quad elements pass the patch test. The figure is not 
proportional, it is a thin cantilever, so that the exact solution is 
easily calculated; the data is E = 3E7, ν = 0.33 (Poisson's ratio), 
plane stress, L = 3.0, h = 0.2 (length/height ratio is 15). The 
comparison of results without and with incompatible modes is 
shown in the following table:

Figure 12. Cantilever beam and its loading

Table 1. Comparison of displacement results in 2D

Graphical comparison of "standard" and "incompatible modes" 
of Q4 elements is presented in Figure 13.
Stresses in elements with incompatible nodes are recovered in 
the same way as for elements without incompatible modes.

Figure 13. Comparison of deflections under force and moment loading

3.2. 3D finite element

3.2.1. Formulation of Q8 element

In principle, the Q8 element is equal to the Q4 element but 
expanded in the third dimension, so there are more degrees of 
freedom. Due to this fact, the formulation of the Q8 element 
will only be briefly exposed. The isoparametric approximation 
for the geometry and displacements inside an element is

;  ; i = 1, ..., 8 (65)

where shape interpolation functions are standard isoparametric 
functions (see [4]), and so the interpolation matrix element N is

; Ni = NiI, i = 1, ..., 8 (66)

where  ξi, ηi, ζi  are nodal isoparametric coordinates.
Equations for the strain-displacement matrix B, stiffness matrix 
K, and consistent loading matrix f are similar to those for the 
Q4 element.

Displacements exact without IM with IM

Loading 1 0.562 0.169 0.544

Loading 2 0.112 0.033 0.113
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3.2.2. Addition of incompatible modes

The Q8 element suffers from the same lack of bending shapes 
as the Q4, and the remedy is based on the same idea: the 
addition of the missing shapes.

 i = 1, ..., 8; j = 1, 2, 3 (67)

where the incompatible mode shape functions are defined as 
follows

     (68)

The strain-displacement matrix is defined as Bm = [B G], where 
matrices B and G for the Q8 element are

   i = 1, ..., 8; j = 1, 2, 3 (69)

The system of equations is again formed as in Eq. (64).

3.2.3. Example

The analysis is performed for the structure in Figure 14 with the 
data E = 3E7, ν = 0.33, plane stress, L = 3.0, h = 0.2, and t = 
0.1. The structure is the same as in the 2D example for the Q4 
element, and so the comparison between elements is possible.
The results of the analysis are presented in Table 2.

Figure 14. Example of 3D cantilever beam with loading

Table 2. Comparison of displacement results in 3D

The comparison with the Q4 element shows that displacements 
due to the force are slightly less accurate, while the accuracy 
of the displacements due to the moment is about the same. 
It should be noted that the Q8 element is numerically much 
more complex: the element stiffness matrix is 24 x 24 and 
with incompatible modes (without condensation) it is 32 x 32, 
compared to 8x8 and 12 x 12 for the Q4 element.

4. Conclusion

This work presents a brief overview of the method of 
incompatible modes. The authors have placed them into two 
common areas of application: failure analysis and enhancement 
of behaviour. In the context of failure analysis, incompatible 
modes have been used to introduce displacement and strain 
functions whose parameters enable description of failure within 
the element itself. The procedure has been demonstrated on a 
1D element for both strain and displacement discontinuities.
In the context of enhancement of the finite elements" 
capabilities, incompatible modes have been used to enrich the 
field of available displacements of standard shape functions. 
Additional quadratic shapes that have been added greatly 
improve the bending behaviour of such elements. Both 2D and 
3D examples are presented.
It has been demonstrated that the method of incompatible 
modes has good properties in both areas of application and that 
its use should be encouraged. Additional degrees of freedom 
could be eliminated through condensation, or reduced through 
the use of the operator split procedure. Results obtained using 
incompatible modes are superior to the ones involving "standard" 
finite elements, i.e., comparable results could only be obtained 
using a much higher number of "un-enhanced" finite elements.
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Displacements exact without IM with IM

Loading 1 0.562 0.167 0.544

Loading 2 0.112 0.033 0.112
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