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Eigenvalue solution for arch dams: ADAD-IZIIS Software

3D earthquake analyses of complex engineering structures such as arch dams are based 
on the determination of a range of eigenvalues and associated eigenvectors. Despite the 
variety of practical numerical eigensolutions available in the literature, the method of 
subspace iteration was found to offer time efficient and accurate eigenvalue solutions 
appropriate for large systems with high degrees of freedom. This paper presents the 
theoretical principles of the well known subspace iteration method implemented in the 
existing ADAD-IZIIS software for finite-element analyses of arch dams.
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Rješavanje vlastitih vrijednosti za lučne brane: računalni program ADAD-IZIIS

Trodimenzionalne seizmičke analize složenih inženjerskih konstrukcija kao što su 
lučne brane temelje se na određivanju raspona vlastitih vrijednosti i odgovarajućih 
vlastitih vektora. Unatoč raznim praktičnim numeričkim rješenjima vlastite zadaće koja 
nalazimo u literaturi, utvrđeno je to da metoda iteracije u potprostoru nudi vremenski 
prihvatljiva i precizna rješenja vlastite zadaće, prikladna za velike sustave s visokim 
stupnjevima slobode. U radu su predstavljena teorijska načela dobro poznate metode 
iteracije u potprostoru s implementacijom uz pomoć postojećega računalnog programa 
ADAD-IZIIS u analizi konačnih elemenata lučnih brana.
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Lösung der eigenen Werte für Hafendämme: Computerprogramm ADAD-IZIIS

Die dreidimensionale seismische Analyse komplexer Ingenieurkonstruktionen 
wie Hafendämme beruht auf der Bestimmung der Bandbreite der eigenen Werte 
und der entsprechenden eigenen Vektoren. Trotz unterschiedlicher praktischer 
nummerischer Lösungen der eigenen Aufgabe, die wir in der Literatur finden, 
wurde festgestellt, dass die Iterationsmethode im Subraum zeitlich akzeptable 
und präzise Lösungen der eigenen Aufgabe bietet, die für große Systeme mit 
einem hohen Freiheitsniveau geeignet sind. In dieser Abhandlung werden bei der 
Analyse der endgültigen Elemente der Hafendämme mithilfe des bestehenden 
Computerprogramms ADAD-IZIIS die theoretischen Grundsätze der bekannten 
Iterationsmethode im Subraum mit Implementierung vorgestellt.
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1. Introduction 

Eigenvalues and eigenvectors are inherent characteristics of any 
engineering structural model. These parameters also referred 
to as ‘mode shapes and natural frequencies’ represent major 
dynamic features of the structure. In many cases, the mode 
shapes and natural frequencies of structures are the basis of 
the design criteria. Their evaluation is important:
 - in the planning process during the pre-construction stage for 

accurate seismic design
 - in the post-construction period for the long term monitoring 

of structural seismic properties, vital to help engineers 
improve the safety and maintainability of critical structures. 

In addition, an update of the model stiffness parameters, 
obtained by comparing the calculated eigenvalues with those 
measured by ambient or force vibration tests, is important to 
provide insight in the current health status of the structure. 
Eigenvalues and eigenvectors [1-3], have many applications 
in both pure and applied engineering mathematics. The 
eigenproblems related to steady-state and dynamic analyses 
of structures are of particular interest in the civil engineering 
practice. In general, dynamic analyses of structures can be 
based on the mode superposition method for linear problems, 
or on the direct integration of uncoupled equation of dynamic 
motion for nonlinear problems. The application of either one of 
these techniques requires solution of the eigenproblem. The 
complex structural systems usually generate large matrices 
such that it becomes impractical to evaluate all eigenvectors 
and eigenvalues that theoretically participate in the response. 
This is especially important in the computation of the linear 
elastic dynamic response based on the mode superposition 
method. Knowing that for rigid structures, such as gravity dams, 
only the first several eigenvalues and associated eigenvectors 
are significant to the seismic response [4-8], it is necessary to 
define an optimal number of modes that should be included for 
an accurate modal analyses. This number varies depending on 
the type of the structure, type of dynamic loading, and desired 
accuracy. It should satisfy the criterion of the cumulative 
effective mass participation greater than 90 % of the total 
structural mass. An optimum number of modes also depends 
on the frequency content of the selected excitation. 
The three dimensional (3D) dynamic analyses of important 
complex flexible structures, such as arch dams, usually require the 
determination of a larger number of eigenvalues and eigenvectors 
[9-13]. This is especially true when the applied excitation has a 
higher level of power spectral density and a wide range of dominant 
frequencies of the Fourier amplitude spectrum. 
The application of the direct integration method for solving 
dynamic motion of dams constitutes an imperative for the 
analysis of nonlinear behavior [11, 14-16]. In this case, the 
eigensolution is required as the direct integration method is 
based on the application of the Rayleigh damping concept. The 
Rayleigh damping coefficients, a and b, are determined using 

known damping ratios in uncoupled mode, xi, along with the 
corresponding circular frequencies, ωi, chosen to represent 
the energy dissipation ability of the structural system. For a 
given coupled dam-reservoir-foundation system, the Rayleigh 
damping coefficients provide equivalent damping ratios capable 
to cover correctly the range of modes (frequencies) of interest. 
The simulated energy dissipation efficiency can be measured 
by plotting the equivalent modal damping as a function of 
the eigenvalues for the entire eigenspace [17]. The selection 
of new values is needed for cases when the representation 
of the effective damping ratios is not sufficiently accurate. To 
overcome this problem, Indrajit et al. [17] suggested an iterative 
solution for the best-fit values of a and b [17]. Therefore, the 
definition of a wider range of eigenvalues is essential even in 
cases of nonlinear dynamic analyses.
The objective of the present study is to provide a critical state-
of-the-art literature review of the available practical numerical 
eigensolutions and to select, implement, and validate a method 
that is most appropriate for large systems with high degrees of 
freedom using the existing ADAD-IZIIS software for the finite-
element analysis of arch-dams [18].

2. Eigenvalue solution methods

The fundamentals and basic considerations used for the solution 
of a typical eigenproblems have been extensively presented in 
literature [1-3]. The standard eigenvalue formulation can be 
solved using the linear equation of the following form:

A · x = l · x (1)

where, x is a nonzero vector that satisfies the above equation, 
and l represents the eigenvalue of the positively definite matrix 
A. The eigenvalue l is the factor by which the eigenvector x 
changes when multiplied by the matrix A. An eigenspace of a 
matrix is the set of all pairs of eigenvectors and eigenvalues. 
The objective of the dynamic response analyses of an 
assemblage of structural elements is the solution of the 
generalized eigenvalue problem written in the following form:

A · x = l · B · x (2)

When the finite element discretization is used for domains for 
which the general form of eigenvalues is sought, the matrices 
A and B are positively definite and represent the stiffness and 
mass matrix, respectively. Both matrices are of the same order 
and, for cases when the mass matrix is not diagonal, both have 
same bandwidth. Experience has shown that consistent mass 
formulation is not always necessary and that a good accuracy 
can also be obtained using a lumped mass matrix [19].
The buckling instabilities of structures also constitute an 
eigenvalue problem [20] requiring definition of only the first 
several eigenvalues. In this case, the standard linear equation 
has the following form: 
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K · u = l ·KG · u (3)

where K is the deflection stiffness matrix, KG is the geometric 
stiffness matrix corresponding to the matrix B in equation (2), l 
is the buckling load, and u is the corresponding buckling mode. 
In this case, the eigenvalue problem is defined with the general 
equation (2). However, to obtain the required solution, equation 
(2) needs to be transformed as follows:

B · v = x · A · v (4)

where the target eigenvalue solution is the absolute maximum 
value of χ = 1/l that gives the lowest buckling load l. 
The consideration of fluid compressibility in hydrodynamics 
also involves application of the standard eigenvalue 
formulation. Following the transformation, the second order 
Poisson differential equation assumes the following form [21-
22]: 

 (5)

where p = p(x,y,z,t) is the hydrodynamic pressure distribution 
in space and time. In the frequency domain, it can be written as  
p = posin(ωt), where the second derivative is  -poω

2sin(ωt). 
This formulation leads to the standard eigenvalue definition:

Hpo = -k2po (6)

It can be concluded from the above discussion that 
eigensolution is required for numerous engineering problems. 
Several numerical methods are available in the current 
practice. The selection of the most appropriate method to 
solve a particular problem relies first of all on the system size, 
matrix bandwidth and the number of required eigenvalues 
and eigenvectors. In addition, the efficiency of the solution 
involving parameters such as: accuracy, required number 
of numerical operations, storage requirements, and central 
processor unit (CPU) time, should also be considered.

2.1. Low degree of freedom systems

The existing efficient and accurate methods for eigensolution of 
systems with low degrees of freedom and small bandwidth can 
be regrouped into three major groups:

 - vector iteration methods (inverse iteration, forward iteration, 
Gram-Schmidt iteration, shifting in vector iteration, Rayleigh 
quotient iteration, Jacobi iteration)

 - transformation methods (Jacobi method, Hausholder-QR-
inverse iteration method)

 - explicit and implicit polynomial iteration methods. 

Among the above methods, the well-known Householder-
QR-inverse iteration technique [2] merits attention as the 

generally accepted method for solving eigenvalues based on 
standard formulation of the problem without the need for its 
transformation. The generalized Jacobi iteration is also an 
interesting and often considered technique. It provides a direct 
solution for all eigenvalues and eigenvectors of the established 
generalized eigenvalue problem [22-26]. In addition, the static 
condensation of the massless degrees of freedom in a lumped 
mass analysis is not essential for a direct solution and it can be 
particularly efficient when the off-diagonal elements are small 
or sparse [22, 26].

2.2. High degree of freedom systems

Two basic numerical techniques have been developed for 
eigensolution of large systems with high degrees of freedom: 
the Determinant Search Method [24-27] and the Subspace 
Iteration Method [22, 28, 29]. Both techniques use some of the 
methods applied for the low degree of freedom systems, either 
in the process of transformation or in the process of iteration 
required for finding solution to an eigenproblem.
The algorithm of Subspace Iteration Method, originally 
developed by Bathe [22], has recently been improved by parallel 
processing enabled by the use of new generation of computers 
[29].

2.2.1. Determinant search method

The determinant search is a widely used and a more advanced 
method. It effectively incorporates the triangular factorization 
and the Gram-Schmidt inverse vector iteration method. 
This combination offers an efficient solution in the case of 
large systems where the number of required eigenvalues 
and corresponding vectors is much smaller than the order 
of matrices, and in cases where matrices have a small 
bandwidth. The method is based on the fact that eigenvalues 
actually represent the roots of the characteristic polynomial. 
The applied procedure first shifts the solution in the vicinity 
of the subsequent unknown root and then uses the inverse 
iteration to determine the eigenpair. The number of negative 
pivots in the course of factorization indicates whether the 
shift is in accordance with the required root. The convergence 
of the applied iterations can be sometimes slow, especially 
when iterations yield convergence towards a multiple root 
or a cluster of roots. In such cases, the eigenvalue separation 
theorem (Sturm sequence property) is applied to accelerate 
the iterative procedure [30-31]. The required eigenvalues 
and vectors are then obtained in succession from the least 
dominant eigenpair upwards. 
Two serious setbacks accompany the determinant search 
method under certain circumstances. The first one is the 
failure to assess the accuracy of the approximations for the 
eigenvectors. The second setback is the possibility of losing the 
lower eigenvalues and eigenvectors and inaccurate estimation 
of the higher eigenvalues which are mostly congested. The 
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method’s inefficiency is amplified by the need of one triangular 
factorization for each determinant evaluation, which needs 
additional computational time.

2.2.2. Subspace iteration method

The subspace iteration method solves the generalized 
form of the eigenvalue problem to directly define the 
first several eigenvalues, indicated herein with p, and the 
associated eigenvectors. In opposition to the determinant 
search method, there is no need for transformation into the 
standard eigenvalue form. The subspace iteration method 
gives accurate and time effective solutions for a wide 
range of eigenvalues and is convenient for large bandwidth 
systems with hundreds of degrees of freedom. To decrease 
the computational time, it uses primarily vector iterations 
and only a few factorizations. The method’s main feature 
is the reduction of dimensionality of the analysed problem 
from N-dimensional space to q = 2p dimensional subspace 
for solving the q dimensional eigenvalue problem, where N 
is the number of degrees of freedom of the analysed domain 
and p is the number of least dominant sought eigenvalues 
with the required accuracy ( where p <  q << N ). 
Generally, the convergence can be obtained in only a few 
iterations when the starting subspace spanned by the q vectors 
is a "good" approximation of the least dominant p-dimensional 
subspace (i.e., when the initial transformation vectors are 
close to the sought eigenvectors). It has also been shown 
that a higher number of starting iteration vectors contributes 
towards spanning a larger initial subspace and a higher ultimate 
convergence rate of the iteration vectors. Therefore, the matrix X 
in the generalized eigenvalue equation comprises q eigenvectors 
to guarantee monotonic convergence of the p least dominant 
eigenvectors. The reasonable number of iteration vectors 
leading to monotonic convergence is defined as q = min{2p, 
p+8}. The technique is based on the simultaneous iteration of 
a desired number of vectors and of operators A and B, taking 
advantage of the fact that both tend towards the diagonal form 
within subspace iterations. Obviously, the main difficulty of the 
subspace iteration method lies in the selection of the starting 
subspace. 
An optimum eigensolution algorithm should also prove 
numerical stability in generating an orthogonal basis in each 
subspace within the smallest number of required simultaneous 
iterations that still provide a satisfactory convergence rate.
A simultaneous iteration over the generalized eigenvalue 
formulation assumes solution of the following equation:

    k = 1, 2, 3, .... (7)

where the matrix Xk+1 stores iteration vectors after performing 
the first k iteration steps, and the matrix Rk+1 is the upper 
triangular matrix which ensures that the vectors in Xk+1 are 
B-orthogonal. 

Different iteration schemes exist for finding solution to equation 
(7). Bauer [32] proposed an original bi-iteration method for an 
arbitrary form of the matrix A. On the other hand, Rutishauser 
[34] focused on solving a special case of the symmetric 
matrix A. The simultaneous iteration method introduced 
by Jennings is based on calculation of the linear prediction 
matrix for improved approximations by means of the current 
iteration vectors [34-36]. Although these advanced iteration 
schemes incorporate different techniques, they all represent 
a convenient combination of basic methods such as: the Ritz 
analysis that provides the best approximation of the lowest 
eigenvalues [37], the Rutishauser subspace iteration algorithm 
[33], or the method of inverse iteration with Gram-Schmidt 
orthogonalisation.

3. Algorithm for subspace iteration method

There are several reasons why the generalized Jacobi method 
was applied in the ADAD-IZIIS program [18] for solving a 
generalized form of the eigenvalue equation. It is a rotational 
method for elimination of off-diagonal terms based on the 
threshold iteration. In the process, the off-diagonal terms are 
zeroed only if they are a magnitude smaller than the threshold 
for the current iteration. The coupling factors  

 
and 

 
are used to represent the threshold within each 

iteration as a measure of the coupling between generalized 
degrees of freedom i<j. The coupling factors are assumed to be 
smaller than 10-10 within the fifth iteration and the threshold is 
set to 10-2k, where k is the iteration number. The relative change 
in the eigenvalue estimates is set to be smaller than 10-8. 
The main difficulty of the subspace iteration method lies in the 
selection of initial transformation vectors as a starting subspace. 
Hence, the choice of the initial transformation vectors X 
represents an important step in the subspace iteration method 
and a challenging topic for scientific investigations. Only several 
schemes for selecting the starting vectors in the p-dimensional 
subspace have been proposed in the literature, and so this 
selection still remains highly subjective.
The general approach consists in establishing the matrix 
X columns using elements from the matrices A and B only 
[22]. The matrix R = B·X, representing the right-hand side of 
the equation A·X = l·B·X, was found to be the most effective 
when the first vector in the matrix X is simply a diagonal of 
the matrix B. The remaining vectors are unit vectors with +1 
at the coordinate with the largest aii/bii ratio. The rationale 
behind the selection of the above type of starting vectors is 
to avoid potential missing of a mode by exciting all the mass 
degrees of freedom in the first vector of matrix B. At the same 
time, the remaining vectors must be linearly independent and 
should excite points of maximum mass and flexibility ratio only. 
Moreover, to ensure better convergence, the unit entries of the 
second to the last vector should not be very close together. The 
algorithm based on the above approach is closely related to the 
static condensation analysis. However, it may sometimes lead 



Građevinar 10/2018

885GRAĐEVINAR 70 (2018) 10, 881-890

Eigenvalue solution for arch dams: ADAD-IZIIS Software

to a significant number of iterations. Another potential option is 
to include the conventional Ritz analysis in which the specified 
load patterns can represent a reasonable first approximation. 
The algorithm proposed by Uhrig [38] based on the component 
mode synthesis is also sometimes applied.

3.1. Step by step solution

The applied algorithm comprises the following steps over the 
generalized eigen formulation (2). 

Step 1 - Definition of the starting eigensubspace: the eigenspace 
is first determined with q=min{2p, p+8}. For cases when 
2p<p+8, the eigensubspace is spanned by the starting iteration 
vectors q, where q=2p. These vectors constitute the matrix R1 of 
the order of N·2p with the following form:

R1 = B · X1 (8)

where B is the diagonal mass matrix of the order of N·N; X1 is 
the initial transformation matrix (starting iteration vectors) 
spanning the eigensubspace q. The order of the matrix X1 is N·2p 
and it is defined according to the Bathe’s scheme [22]; and p is 
desired number of eigenvalues and vectors. 

Step 2 - Solution of the matrix : triangular factorization 
is applied to solve the matrix using the Gaussian elimination 
method over the equation (2). In the method, the  matrix 
represents the starting matrix for the next iteration

   k = 1, 2, 3, .... ∞ (9)

where the operator A remains in an unaltered form (original 
stiffness matrix) of the order of N·N,  is the new iteration 
matrix of the order of N·2p, and Rk is a previously defined 
iteration matrix of the order of N·2p.

Step 3 - Transformation vectors: according to the applied 
technique, the iteration vectors assume the role of 
transformation vectors over the operators, matrices A and B. 
The transformation actually represents a projection of these 
matrices onto solution space ek+1 , as follows:

          (10)

The above transformation reduces the degrees of freedom 
from N to 2p, and eliminates the coordinates out of the selected 
smaller q subspace. The order of the operators Ak+1 and Bk+1 is 
2p·2p.

Step 4 - Solution of the eigensystem: the solution of the 
eigensystem of the projected operators using the generalized 
eigenformulation and generalized Jacobi method is as follows:

Ak+1  · Qk+1= Bk+1 · Qk+1 · lk+1 (11)

where, the operators Ak+1 and Bk+1 are defined in the q subspace 
with a reduced number of degrees of freedom. Therefore, 
any of the available methods for eigensolution with high or 
low degrees of freedom could be applied in this step. The 
generalized Jacobian rotational method for elimination of off-
diagonal terms is applied in this case. 
The required eigenvectors approximations are calculated in 
a single step. The matrix Qk+1 comprises the eigenvectors of 
the subspace q and is of the order of 2p·2p. With the iteration 
vectors approaching the eigenvectors, the operators A and B 
shift to a diagonal form. 

Step 5 - Solution of the Rk+1 matrix: the next step involves 
determination of improved approximation of the eigenvectors 
estimates and generation of a new iteration matrix Rk+1 used in 
the consecutive iteration.

 (12)

where the revised solution of the eigenvector matrix, equation 
7, is of the order of N·2p. The improved iteration matrix Rk+1 of 
the same order is obtained as follows:

Rk+1 = B · Xk+1 (13)

Step 6 - Testing accuracy of the solution: the eigenvalue 
approximations l of the last two subsequent iterations k and 
k+1 are used to test convergence of the iterative process as 
follows: 

 < tolerance, for i = 1, 2, ..., p (14)

The usual error tolerance is 10-6. Although the iterations are 
performed for q vectors, q>p, the convergence is measured only 
for approximations obtained for the first p eigenvalues.

Step 7 - Repeat steps 2 to 6: the numerical procedure is 
repeated until the convergence within the assigned accuracy is 
achieved. The final eigensolution can be expressed as follows:

 i , for i = 1, 2, ..., p (15)

To ensure that the lowest p eigenvalues and vectors have been 
determined, the Sturm sequence check is applied at the end 
of the iterative process based on the eigenvalue separation 
theorem. The check comprises computation of eigenvalues 
histograms for symmetric three-diagonal matrices where 
the number of eigenvalues is less than the assumed cut-off 
eigenvalue [30, 31]. 
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3.2. ADAD-IZIIS software 

The ADAD-IZIIS software [18] is used to conduct an analytical 
procedure for the three-dimensional dynamic analysis of arch 
dams including the effects of dam-water interaction (water 
incompressibility), soil-structure interaction, and the nonlinear 
effect of contraction joint opening. A powerful feature of the 
program is the option for computer design of the dam body 
following the exact topology of the canyon where the dam is 
built in a process of connection and embedment of arches in the 
terrain [39-40]. The program automatically generates: the finite 
element mesh of the dam along with a portion of the foundation 
mass to account for the dam-foundation interaction, and the 
boundary element mesh of the fluid domain boundaries to 
account for the fluid-structure interaction [40]. The magnitude of 
hydrodynamic pressures at the dam-fluid interface is dependent 
on the amount of energy transmitted to the fluid by vibration 
of the dam and the surrounding terrain [40-41]. The generation 
of the combined finite element and boundary element mesh is 
sufficiently accurate for replicating the terrain topology [40]. 
The step-by-step solution for subspace iteration eigensolution 
described in the previous section was developed for this 
study in an algorithm written in Fortran language. It was then 
embedded in the ADAD-IZIIS software. The software has an 
option to use a multithread processing engaging the MKL Intel 
and OMP libraries. However, the parallel processing in case of 
eigensolution is not treated in this paper.

4.  Eigenvalues and eigenvectors of a complex 
arch dam system

To test its capabilities, the ADAD-IZIIS software with the 
embedded subspace iteration algorithm was used to evaluate 
the eigenvalues and eigenvectors for a double-curved arch dam. 
The validation was carried out by comparing the simulation 
results with those obtained with the commercially available 
SAP 2000 v.14 software [42].

Figure 1.  a) Topology of the terrain with embedded arch-dam, b) 
shape of the central cross section

The considered double-curved arch dam is 405 m long and 
130 m high, with a thickness of the crown cantilever of 26 

m at the base gradually decreasing to 7.6 m at the crest. 
Figure1 presents topology of the terrain and the contact with 
the arch-dam concrete structure, together with the shape 
of the main central cantilever of the dam. The arches at each 
elevation are embedded in the terrain and contain circular 
segments described by central and peripheral radii of extrados 
and intrados curvature, as well as corresponding central and 
peripheral angles. The arch at elevation 375 (level 40), designed 
with one central and two peripheral segments, is shown in 
Figure 2. The mathematical model of the dam, shown in Figure 
3, is generated automatically, using defined shapes of the arcs 
at all selected elevations in accordance with the topology of 
terrain.

Figure 2.  Geometry of the arch at elevation 375 (level 40) composed of 
central and peripheral parts

Figure 3. Mathematical model of the dam and central cross section

The dam body is composed of 27 monolithic blocks. The FE 
model of the arch dam consists of 199 substructures further 
discretized into 1592 finite elements. Twenty and fifteen-
node solid elements were used in the automatic discretization 
process.
The built model contains 3,805 external nodes located between 
the substructures and has 11,415 degrees of freedom. The 
ADAD-IZIIS software considers banded matrices as a special 
type of sparse matrices. The matrix band could contain some 
zero elements. In the presented analyses, the system of 
mass and stiffness matrices has a bandwidth of 1220 for the 
particular case of 11,415 degrees of freedom. The ADAD-IZIIS 
software uses a special algorithm for bandwidth minimization 

Level 40,00 Extrados Intrados

RC 82,62 52,80

a1 30,00 30,00

ad 30,00 30,00

RL 152,62 75,00

b1 10,36 25,00

RD 152,62 75,00

bd 10,36 25,00

RML 0,00 0,00

δ1 0,00 0,00

RMD 0,00 0,00

δd 0,00 0,00
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of 0.85). The fundamental period of the free vibration of the dam 
(empty reservoir) is Te=0.318s, while it amounts to Tf=0.345s for 
the coupled dam-fluid system. Accordingly, the mass of water in 
the reservoir interacts with the solid structure during the vibration, 
increasing the length of the vibration period (eigenvalues) of the 
system. In both ADAD-IZIIS and SAP 2000 v.14 software, the 
hydrodynamic pressure (HDP) was calculated according to the 
added mass principle [43] using the following equation:

 (16)

where H is the water level in the reservoir and z is the coordinate 
of the point on the dam face measured in the coordinate system 
in which H is defined. 
Table 1 presents comparison of the eigenvalues, i.e. the vibration 
periods of the empty and full reservoirs. The ratios between the 
assessments of the vibration periods computed by both ADAD-
IZIIS and SAP 2000 v.14 software packages were obtained by 
means of the following simple equations: RADAD/SAP = 100 · (TADAD-
TSAP)/TSAP, and Ref = 100 · Te/Tf.
It can be observed from Table 1 that the RADAD/SAP ratios vary in 
the narrow range between 0 and 10% for the empty reservoir 
and the reservoir filled with water. RADAD/SAP ratios different 
from zero value are more frequent for comparisons with the 
full reservoir, which is most probably due to the fact that 
the eigenvalues were calculated outside of the ADAD-IZIIS 
software using the added mass concept. Such results are more 
than encouraging because they show high agreement, and 
ratios different from zero are merely an artefact resulting from 
the numbers rounded to the nearest hundredth of a second 
rather than from any numerical inaccuracy. On the other hand, 

to obtain a matrix with a lower bandwidth. Large and complex 
structures, such as dams, are usually associated with large 
bandwidth matrices even if the minimization process is applied. 
If we express the banded matrix in terms of density, the analysed 
system exhibits a density of 21.4% and the corresponding 
sparsity of 78.6%.
The material properties considered in the analyses are typical 
for arch dams: Young’s modulus E = 31.5 GPa, mass density of 
concrete ρ = 2 450 kg/m3, Poisson’s ratio ν = 0.2, mass density 
of water ρ = 1000 kg/m3, acoustic wave velocity in water c = 
1440 m/s. 
The simulations were carried out on a Dell Latitude E5510 PC 
with Intel Core I5, 2.62 GHz, CPU M 560, 3.42 GB RAM. The 
least 12 eigenvectors and values were determined within 
less than a minute. The monotonic convergence was achieved 
within 17 iterations. On the other hand, the numerical model 
analysed with SAP 2000, exhibited 11,310 degrees of freedom. 
The elapsed time for the first 12 eigenvectors and eigenvalues 
amounted to about a minute, and the monotonic convergence 
was achieved within 14 iterations.
The dynamic behaviour of the coupled arch dam-reservoir 
system was significantly affected by the fluid-dam interaction 
and, therefore, the vibration periods of the entire system had to 
be defined. Since the ADAD-IZIIS software provides the finite-
element boundary element (FEM-BEM) orientated solution of 
the FSI effects, and as the fluid domain is not discretized with 
fluid finite elements, the added mass method [41] proved to be 
the only possibility to evaluate the eigenvalues of the coupled 
system. The added mass concept is effective and sufficiently 
accurate for calculation of the eigenvalues of the coupled dam-
reservoir systems.
The eigenvalues for the coupled system were calculated for the 
impounded water depth of 110m (water depth to dam height ratio 

Table 1. Eigenvalues calculated using SAP 2000 and ADAD-IZIIS software

Mode
Period for empty reservoir Period for full reservoir, Hw = 110 m Period empty / full reservoir

ADAD
[sec]

SAP
[sec]

ReADAD/SAP
[%]

ADAD
[sec]

SAP
[sec]

RfADAD/SAP
[%]

RefADAD
[%]

RefSAP
[%]

1 0.318 0.317 0.315 0.345 0.358 -3.631 92.174 88.547

2 0.284 0.287 -1.045 0.315 0322 -2.174 90.159 89.130

3 0.191 0.187 2.139 0.216 0.228 -5.263 88.426 82.018

4 0.167 0.171 -2.339 0.201 0.212 -5.189 83.085 80.660

5 0.149 0.144 3.472 0.165 0.170 -2.941 90.303 84.706

6 0.137 0.139 -1.439 0.154 0.161 -4.348 88.961 86.335

7 0.119 0.121 -1.653 0.137 0.144 -4.861 86.861 84.028

8 0.109 0.110 -0.909 0.133 0.139 -4.317 81.955 79.137

9 0.102 0.102 0.000 0.115 0.122 -5.738 88.696 83.607

10 0.098 0.097 1.031 0.113 0.120 -5.833 86.726 80.833

11 0.091 0.096 -5.208 0.104 0.110 -5.455 87.500 87.273

12 0.086 0.088 -2.273 0.100 0.108 -7.407 86.000 81.481
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Figure 4. First mode shape: a) ADAD-IZIIS axonometric view T1 =  0.318 s; b) SAP 2000 perspective view T1 =  0.317 s

Figure 5. Second mode shape: a) ADAD-IZIIS axonometric view T2 = 0.284 s; b) SAP2000 perspective view T2 =  0.287 s

Figure 6. Tenth mode shape: a) ADAD-IZIIS axonometric view T10 = 0.098 s; b) SAP2000 perspective view T10 = 0.097 s
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the Ref ratios are, as expected, within the 80 and 90% range 
for both codes. Possible discrepancies coincide with those for 
the RADAD/SAP ratios.
The generated FE models and obtained vibration patterns and 
mode shapes for the first, second, and tenth mode, are given in 
Figures 4 to 6, respectively. The presented FE models of the dam 
are slightly different. They mismatch at the end of the arches, 
as the visualization software included with the ADAD-IZIIS code 
draws arches along the whole length without exclusion of the 
embedded part. This, however, does not affect significantly the 
accuracy of the eigensolution as the free vibration patterns are 
associated only with the degrees of freedom, with no specified 
restraints. 
The few characteristic mode shapes which give a preview of the 
vibration patterns obtained by both software packages are also 
given in Figures 4 to 6. It can be observed that the mode shapes 
coincide with each other. 

5. Conclusion 

The computational algorithm of the subspace iteration 
method embedded in the ADAD-IZIIS software for finite-

element analyses of arch dams is presented in this paper. 
The method is especially efficient in defining a wider range of 
eigenvalues and eigenvectors for complex systems with large 
stiffness and mass matrices and with hundreds of degrees of 
freedom. The algorithm is based on solution of the generalized 
form of the eigenvalue problem directly without the need for 
transformation into the standard eigenvalue form. The main 
features of this method are reduction of space dimensionality 
and simultaneous iteration of a desired number of vectors 
and corresponding operators benefiting from the matrix 
diagonalization during the iteration process. 
The main advantage of the applied subspace iteration 
technique is its time effectiveness and accurate approximation 
of the modes, practically excluding the possibility of missing 
the dominant mode. The adapted code in the ADAD-IZIIS 
software was tested on a complex double-curved arch dam 
to evaluate eigenvalues and eigenvectors. The validation 
procedure was carried out by comparing simulation results 
with those obtained with the commercially available SAP 
2000 v.14 software. Only negligible discrepancies were 
observed in the lengths of vibration periods of the considered 
first 12 modes.
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