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Prediction of maximum annual flood discharges using artificial neural network 
approaches

The applicability of artificial neural network (ANN) approaches for estimation of maximum 
annual flows is investigated in the paper. The performance of three neural network models 
is compared: multi layer perceptron neural networks (MLP_NN), generalized feed forward 
neural networks (GFF_NN), and principal component analysis with neural networks 
(PCA_NN). The proposed approaches were applied to 33 stream-gauging stations. It was 
found that the optimal 3-hidden layered PCA_NN method was more appropriate than 
the optimal MLP_NN and GFF_NN models for the estimation of maximum annual flows.
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Prethodno priopćenje
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Predviđanje maksimalnih godišnjih poplavnih protoka primjenom umjetnih 
neuronskih mreža

U radu se istražuje primjenjivost pristupa umjetnih neuronskih mreža (ANN) za određivanje 
maksimalnih godišnjih protoka. Uspoređuje se učinkovitost triju modela neuronskih mreža:  
višeslojne perceptronske neuronske mreže (MLP_NN), generalizirane neuronske mreže 
usmjerene prema naprijed (GFF_NN) i analiza osnovnih komponenata pomoću neuronskih 
mreža (PCA_NN). Predloženi pristupi primijenjeni su na 33 vodomjerne. Utvrđeno je da 
je optimalna metoda PCA_NN s tri skrivena sloja prikladnija za određivanje maksimalnih 
godišnjih protoka od optimalnih modela MLP_NN i GFF_NN.

Ključne riječi:
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Vorhersage der maximalen jährlichen Hochwasserflüsse durch Anwendung 
künstlicher neuronaler Netze

In der Abhandlung wird die Anwendbarkeit des Ansatzes neuronaler Netze (ANN) zur 
Bestimmung maximaler jährlicher Durchflüsse untersucht. Verglichen wird die Leistung dreier 
neuronaler Netzmodelle: mehrlagige perzeptron-neuronale Netze (MLP_NN), generalisierte 
vorwärtsgerichtete neuronale Netze (GFF_NN) und Analyse der Hauptkomponenten 
mithilfe des neuronalen Netzes (PCA_NN). Die vorgeschlagenen Ansätze wurden bei 33 
Wassermessstationen angewendet. Es wurde festgestellt, dass die optimale PCA_NN-
Methode mit drei verborgenen Schichten zur Bestimmung der maximalen jährlichen 
Durchflussraten besser geeignet ist, als die optimalen MLP_NN- und GFF_NN-Modelle.
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1. Introduction

In Turkey, flooding is a highly important natural hazard, second 
only to earthquakes. Flood damage has been extremely 
severe over the past 100 years and has caused great human 
casualties and economic losses. Many floodplains are 
currently highly populated and industrialized. On the other 
hand, there is often only a limited presence or total absence 
of the recorded annual maximum discharge data at the site 
of interest. Many annual flood series are also too short for 
accurate estimation of devastating floods. Therefore, the 
use of regional information to estimate flood discharges at 
sites with little or no available data has become increasingly 
important for the flood control and planning of hydraulics 
structures, especially in Turkey. 
A number of techniques for the estimation of flood discharges 
have been developed over years. These techniques can 
be divided into three categories: parameter estimation 
techniques, regression techniques, and artificial intelligence 
techniques. Major developments in the estimation of flood 
discharges were made based on the regional frequency 
analysis according to the idea of probability weighted 
moments introduced by Greenwood [1] and the theory of 
L moments proposed by Hosking [2]. L moments, certain 
linear combinations of probability weighted moments, can 
be defined as the measures of location, scale and shape 
of probability distributions, and form the principal for an 
extensive theory of the description, identification and 
estimation of the distributions. The approach of L moments 
in regional frequency analysis has been applied successfully 
in a number of studies in Southern Africa [3], the UK [4], India 
[5], Canada [6], China [7], Egypt [8], Iran [9], Malaysia [10], 
Italy [11, 12], Kenya [13], and Turkey  [14-16].
Spatial variations in frequency analysis are closely related to 
the variations of regional meteorological and physiographic 
factors. Therefore, regression models are frequently used 
to make estimates of flow statistics. Different quantile 
estimation studies based on regression models  [17-22] 
have clearly indicated that regression based methods 
of flood regionalization are reliable for flood discharge 
estimation using variables dependent on site characteristics 
at ungauged sites. 
Most hydrological processes are highly nonlinear, variable 
in time, and spatially distributed. ANN have a flexible 
mathematical structure that can identify complex nonlinear 
relationships between inputs and outputs without predefined 
knowledge of the underlying physical processes involved 
in the transformation [23]. In recent years, artificial neural 
networks (ANN) have been successfully used to directly map 
complicated nonlinear relations. ANN have proven to be an 
efficient alternative to traditional methods for modelling 
qualitative and quantitative water resource variables [24-26], 
and it has numerous applications in hydrology. In the study 
by Shu and Burn [27], it was used for index flood and flood 

quantile estimation. The application to selected catchments 
in the United Kingdom (UK) shows that the ANN model 
performs better than multiple linear regression methods. 
ANN models are also thought to be beneficial and applicable, 
especially in problems whose procedures are difficult to 
define using physical equations [23]. Aziz et al. [28] examined 
the utility of the ANN based regional flood frequency analysis 
(RFFA) method and compared the performances of the ANN-
based RFFA models with regression analysis. They found 
that the ANN-based RFFA model performed better than 
other models with regression analysis. Seckin et al. [29] 
developed ANN, linear and nonlinear models as alternatives 
to L-moments method for estimation of flood peaks of 
various return periods. They showed that the estimator 
productivity of the ANN multi-layer perceptrons model led 
to a much better performance than others. Anilan et al. 
[16] investigated feasibility of the L-moments based ANN 
method in predicting flood discharges using the data set of 
the Eastern Black Sea Basin (EBSB). The applied ANN model 
outperformed the regression models, which shows that the 
ANN is more appropriate for flood discharge estimation at 
ungauged sites.
This paper compares the applicability of three ANN models 
for the estimation of flood discharges using the data set of 
EBSB. The performance of each method is evaluated by the 
mean absolute error (MAE), mean squared error (MSE), root 
mean square error (RMSE) and relative error (RE) values.

2. Study area and data used

The Black Sea coast receives the greatest amount of 
rainfall and is the only region in Turkey that receives rainfall 
throughout the year. The Eastern Black Sea Basin (EBSB) is 
located on the North Eastern coast of Turkey, as shown in 
Figure 1. The basin is surrounded by the Eastern Black Sea 
Mountains in the south and Black Sea in the north. The total 
basin area is 24,077 km2, yielding 14.9 km3 of water with 
an average 19.5 lt/sn/km2 yield, [30]. The EBSB averages 
nearly 1 100 mm rainfall annually, this value can reach 2 300 
mm near the Rize Province [31]. The strata of the region are 
generally made of impermeable or semi permeable volcanic 
rocks, which prevent the rainfall from percolation and force 
the water to flow as runoff [30]. Flood discharge estimation 
is essential for the region since it has a great potential 
risk against floods due to its hydrologic and topographic 
characteristics. This study involves two basic types of data:

 -  streamflow data (the annual maximum flood peaks)
 - basin characteristics data (physiographical, meteorological, 

and hydrological data). 

The stream-gauging stations in Turkey are operated by the 
General Directorate of State Hydraulic Works (DSI) [32]. 
A total of 53 stations were initially selected, which then 
reduced to 38 due to the deficiencies in streamflow data like 
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missing values and insufficient record time spans. Record 
times of less than 10 years were not taken into consideration 
because it influences the accuracy of prediction of maximum 
annual discharges and return periods. In addition, stations 
found to be heterogeneous with the tests of homogeneity 
and heterogeneity measures based on L-moments were 
excluded from the study. Finally, the annual maximum flood 
peaks were picked for 33 stream-gauging stations (SGS) in 
the region whose record time spans varied between 10 and 
42 years. The locations of the stations used in this study are 
shown in Figure 2.
Regression analysis was used for the determination of 
independent variables affecting flood magnitude. Different 
models were set up with nonlinear regression functions. The 
flood peak discharges and catchment characteristics used 
in the models provide an equation that best describes the 
relationship between the two sets of data. Characteristics 
used in the study include drainage area, elevation, mean 
annual rainfall, main stream slope, stream density, and return 
period values. The selection of independent variables used in 
the regression equations was made based on the previous 

studies as presented in Table 1. The model with these 
variables indicated that they are significant and that they 
greatly affect flood discharges, as also emphasized in the 
study of Aziz et al. [28]. In summary, independent variables 
used in this study are: drainage areas of SGS’s expressed in 
km2 (A) and elevation expressed in m (E), mean annual rainfall 
values in mm (R), main stream slopes expressed in m/km 
(S), stream density values in km/km2 (D) and return periods 
expressed in years (T). 
The mean drainage area of stations is 775 km2 with a range 
from 83 to 3.132 km2. the elevations of the stations range 
from 17 to 1.150 m with the mean value of 433,24 m, as 
obtained from DSI. The mean annual rainfall values (mm) 
observed in various standard times of the meteorological 
stations in the region were obtained from Turkish State 
Meteorological Service [33]. Main stream slopes and stream 
density values were obtained from Saka [34]. T values 
corresponding to each flood discharge were obtained from 
Anilan [35] and Anilan et al. [16]. They were computed by 
frequency analysis based on L-moments applied on the 
observed annual peaks series of a gauging site. T values 

Figure 1. Location Map of EBSB

Figure 2. Locations of stations in EBSB
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corresponding to each flood discharge were calculated using 
the log normal distribution, as the best-fit distribution of the 
region. Seckin et al. [29] state that the relationship between 
Ln(Q) and the independent variables is more significant 
compared to Q as the dependent variable. Thus Ln(Q) values 
were used as a dependent variable in this study. 

3. ANN approaches 

Artificial neural networks (ANNs) are flexible mathematical 
structures that are capable of identifying complex non-
linear relationships or patterns between input and output 
data sets, and can estimate output values based on training 
and learning processes. The main differences between 
the various types of ANNs are arrangement of neurodes 
(network architecture) and the many ways to determine 
the weights (w) and functions for inputs (x) and neurodes 
(training) [36]. 

3.1.  Multi layer perceptron neural networks (MLP_
NN)

Multilayer perceptrons (MLP_NN) have been applied 
successfully in many different problems since the advent of 
the error backpropagation learning algorithm (BP). The main 
advantage of MLP_NN is that they are easy to handle and can 
approximate any input/output map [37, 38]. MLP_NN consist 
of one or more hidden layers and their computation nodes are 
correspondingly called hidden neurons of the hidden units. In 
general, intervening between the external input and the network 
output is the function of hidden neurons. The network is able to 
extract higher order statistics when one or more hidden layers 
are added to the system. If the size of the input layer is large, 
this ability of hidden neurons is especially valuable. MLP_NN is 
trained by leading a particular input to a special target output. 
The weights are calibrated based on a comparison of the output 
and the target, until the network output matches the target 
[39-41]. 

3.2.  Generalized feed forward neural networks 
(GFF_NN)

Generalized feed forward neural networks (GF_NN) are a 
generalization of the FF_NN consisting of several hidden 
layers of generalized neurons, and an output layer of 
generalized, sigmoidal or linear neurons [42]. Because GF_
NN presents a larger number of connections, this type of 
network can generally be trained more quickly than the non-
generalized MLP_NNs [43]. By adapting the weights, the 
neural network works towards an optimal solution based on 
a measurement of its performance [44].

3.3.  Principal component analysis with neural 
networks (PCA_NN) 

The major analytical object of PCA is to reduce dimensions of 
the observed information, compiled in a data set, preserving 
the original data variability [45]. The PCA transforms the 
original variables into new, uncorrelated variables (axes), 
called principal components, which are linear combinations 
of the original variables [46]. A principal component (PC) can 
be expressed as:

Zij= ai1x1j + ai2x2j + ai3x3j + …. + aimxmj (1)

where z is the component score, a is the component loading, 
x is the measured value of variable, i is the component 
number, j is the sample number, and m is the total number 
of variables [47].

3.4. Neural networks training algorithms

Two different ANNs training algorithms, namely Back 
Propagation and Conjugate Gradient (CG) were used in the 
present study. This was done with a view to see which 
algorithm produces better results for the application under 

Table 1. Catchment independent variables used in some previous studies

Authors Independent variables adopted

Jingyi i Hall (2004) A, R, S, E, main stream length, geological feature index, plantation cover index

Shu i Burn (2004) A, R, soil drainage type

Leclerc et al. (2007) A, R, gauging station latitude, gauging station longitude, mean air temperature

Palmen i Weeks (2011) A, R, S, I, D, river length, sediment area, plantation area, evapotranspiration

Malekinezhad et al. (2011) R, Length of main waterway, compactness coefficient, mean annual temperature

Haddad et al. (2012) A, R, I, D, mean annual evapotranspiration,

Aziz et al. (2013) A, R, S, I, evapotranspiration,

Seckin et al. (2013) A, E, latitude, longitude, return period

This paper (2014) A, R, S, E, D, return periods

*A - drainage area, R - mean annual rainfall, S - stream slope, E - elevation, I - rainfall intensity, D - stream density
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consideration [48]. The algorithms used in the study are 
briefly introduced below. 

3.4.1. Back propagation algorithm 

The BP is the learning algorithm that is most widely used in 
neural networks, while also being one of the most powerful 
algorithms. The BP was developed by Rumelhart et al. [49]. 
The objective of the BP algorithm is to find optimal weights 
to generate an output vector as close as possible to the 
output vector target values with the selected accuracy. 
Following the calculated error value between the computed 
and actual output, the algorithm back propagates to the 
layers. The weights are subsequently updated depending 
on their contribution to the error function [48, 50]. A more 
detailed information about this algorithm can be found in 
Kisi and Uncuoglu [48], Nacar et al. [51], and in any ANN 
text books.

3.4.2. Conjugate gradient

This technique differs from the error BP in gradient 
calculations and subsequent corrections to weights and 
bias [52, 53]. Here a search direction is computed at each 
training iteration k and the error function f(X) is minimized 
along with the use of a line search. The gradient descent 
does not move down the error gradient as in the foregoing 
back propagation method but along a direction that is 
conjugate to the previous step. The change in gradient is 
thus taken as orthogonal to the previous step with the 
advantage that the function minimization, carried out in 
each step, is fully preserved because of the lack of any 
interference from the subsequent steps. Details about 
these well-known algorithms can be found in Thirumalaiah 
and Deo and Kisi [54, 55].

3.5. Training process 

The main objective of this section is to develop an ANN model 
with three different neural network models and two different 
training algorithms that estimates the flood discharges using 
the data set of EBSB. When designing an ANN architecture, 
it is important to choose a proper network size. Although 
the ANN can have more than one hidden layer, theoretical 
works have shown that a single hidden layer is enough for 
an ANN to approximate any complex nonlinear function  [56, 
57]. However, not only single hidden layer models but also 
two hidden layer models have been tried in this study. Each 
layer is fully connected to the next, but no connections exist 
between neurons in the same layer. The first and third layers 
contain the input and output data, respectively. The numbers 
of hidden layer neurons were found using the simple trial-
and-error method from three to nine in all applications. 
The connections between the input layer and the middle or 
hidden layer contain weights, which are usually determined 
through training of the system. The hidden layer sums the 
weighted inputs and uses the transfer function to create an 
output value. The transfer function is a relationship between 
the internal activation level of the neuron (called activation 
function) and the outputs [36]. Two different transfer 
functions, i.e. tangent hyperbolic and sigmoid functions, are 
used in hidden and output layers for this study. Pourhaghi et 
al. [58] used the tangent axon and the sigmoid axon functions 
for predicting the input flows by ANN. Fayed and Abdelbary 
[59] also showed that the application of sigmoid axon is 
more efficient for hydrological forecasting by ANN. In this 
study, the tangent axon and the sigmoid axon functions and 
their combinations were investigated in hidden and output 
layers for identifying their performance. The learning and 
momentum rates for BP algorithm were taken as 1 and 0.7, 
respectively. The available data set (909 observations) was 

Data set Statistic Return period, 
T [yeat]

Drainage 
area, A 
[km2]

Stream density,  
SD

[km/km2]

Stream slope,  
S

[m/km]

Elevation, 
E

[m]

Mean annual rainfall,  
R

[mm]

Ln Q 
(discharge) 

[m3/s]

Training 

Min 1.013 83.3 192.6 0.022 17 208.556 2.272

Mean 5.829 637.102 267.675 0.051 467.673 1166.3 4.303

Max 501.971 3132.8 446.3 0.084 1150 3332.2 6.594

Testing 

Min 1.022 258.6 167.2 0.029 90 414.6 2.912

Mean 4.619 441.364 241.096 0.043 345.925 774.88 4.234

Max 63.099 576.8 284 0.058 530 1343.8 5.198

Validation 

Min 1.007 162.7 237.7 0.031 78 434.339 3.281

Mean 5.134 544.779 266.178 0.049 252.646 1139.9 4.571

Max 83.394 834.9 328.5 0.064 400 2443.488 6.223

Table 2. Input and output data used in the analysis
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divided into three subsets: training (668), validation (108), 
and test (133). All the variables were selected randomly 
independently of stations, in total, about 73 % of the data 
is used for training, 12% for validation, and 15% for test. The 
minimum, average, and maximum values of the data set are 
presented in Table 2.
Neural networks generally show improved performance with 
normalized data. The use of original data as input to neural 
network may cause a convergence problem [16]. All the data 
sets were therefore, transformed into values between 0.1 and 
0.9 as:

   (2)

The model behaviour, development and validation steps, were 
evaluated by calculating statistical parameters RMSE, RE, MAE 
and MSE, as shown in equations (3) to (6) respectively:

 (3)

 (4)

 (5)

 (6)

4. Results and discussion

Three neural network methods were examined using 
the annual peak flows of 33 SGS in order to predict flood 

discharges for ungauged catchments. MLP_NN, GFF_NN 
and PCA_NN methods were adapted to the data of six 
independent variables and LnQ. As explained in the training 
process, the data sets were divided into training, validation, 
and test data sets for all ANN models applied. As shown 
in Table 3, hidden layers with the number of different 
processing elements were applied for each of the three types 
of ANN method with sigmoid axon and tangent hyperbolic 
axon transfer functions. BP and CG learning algorithms were 
examined by determining the MSE, RMSE, MAE, and RE 
values for both validation and test data.
Each of the three methods for different processing elements 
(PE) led to significant changes in error values of training 
algorithms. Models with CG algorithm for each method had 
usually lower error values than models with BP algorithm, 
as shown in tables 3 and 4. The lowest RMSE value for 
the validation data set amounted to 0.21, as determined 
according to the PCA_NN method and CG algorithm using 
the three hidden layer model. In addition, the lowest RMSE 
for the test data set amounted to 0.30, again as determined 
with the PCA_NN method and CG algorithm.
The type of transfer function also has a great effect on the 
performance of the ANN model. The performed analysis 
results show that the sigmoid axon transfer function 
performed better than tangent axon. Calculated errors for 
the validation data set of the models set up with the sigmoid 
axon transfer function provided lower values than the values 
for the tangent hyperbolic axon transfer function in each of 
the three methods. The error values of the models set up with 
the sigmoid axon transfer function for the test data set were 
again lower than the models with the tangent hyperbolic 
axon transfer function in GFF_NN and PCA_NN methods as 
shown in Table 4.

Model Error

3PE 6PE 9PE

THYP SIG THYP SIG THYP SIG

BP CG BP CG BP CG BP CG BP CG BP CG

MLP_NN

RMSE

0.29 0.28 0.39 0.26 0.34 0.42 0.39 0.31 0.39 0.30 0.39 0.30

GFF_NN 0.36 0.29 0.42 0.30 0.49 0.35 0.41 0.31 0.38 0.36 0.41 0.31

PCA_NN 0.28 0.28 0.39 0.21 0.29 0.34 0.44 0.30 0.39 0.36 0.39 0.30

MLP_NN

MSE

0.08 0.08 0.15 0.07 0.11 0.18 0.15 0.09 0.15 0.09 0.16 0.09

GFF_NN 0.13 0.08 0.17 0.09 0.24 0.12 0.17 0.09 0.15 0.13 0.17 0.10

PCA_NN 0.08 0.08 0.15 0.04 0.09 0.12 0.19 0.09 0.16 0.13 0.16 0.09

MLP_NN

MAE

0.23 0.21 0.30 0.21 0.28 0.33 0.30 0.24 0.31 0.21 0.30 0.24

GFF_NN 0.30 0.23 0.32 0.21 0.39 0.28 0.31 0.25 0.30 0.27 0.31 0.25

PCA_NN 0.22 0.23 0.30 0.17 0.23 0.28 0.34 0.24 0.32 0.29 0.30 0.22

MLP_NN

RE

5.55 5.06 7.24 5.09 6.72 8.17 7.22 5.91 7.38 5.15 7.26 5.73

GFF_NN 7.16 5.66 7.56 5.17 9.85 6.67 7.55 6.08 7.08 6.72 7.56 6.00

PCA_NN 5.31 5.45 7.17 4.05 5.65 6.75 8.25 5.74 7.54 7.00 7.27 5.54

Table 3.  Error values of MLP_NN, GFF_NN and PCA_NN for different processing elements, transfer functions and learning algorithms for 
validation data set
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The influence of varying the number of hidden layers 
was examined to achieve the best performance of the 
utilized ANN models. Models with 1 and 2 hidden layers 
were tested. The analysis results shown in Tables 3 and 

4 reveal that the one hidden layer ANN model has the 
best performance. When the number of hidden neurons 
increased, the performance of the network model 
decreased. 

Figure 3. Observed and calculated flood discharges by PCA_NN, MLP_NN, and GFF_NN models for: a) validation; b) test

Table 4.  Error values of MLP_NN, GFF_NN and PCA_NN for different processing elements, transfer functions and learning algorithms for testing 
data set

Model Error

3PE 6PE 9PE

THYP SIG THYP SIG THYP SIG

BP CG BP CG BP CG BP CG BP CG BP CG

MLP_NN

RMSE

0.59 0.35 0.51 0.47 0.57 0.47 0.50 0.49 0.47 0.39 0.50 0.46

GFF_NN 0.52 0.64 0.52 0.46 0.55 0.46 0.46 0.45 0.69 0.41 0.52 0.44

PCA_NN 0.74 0.59 0.50 0.30 0.61 0.57 1.43 0.56 0.52 0.47 0.52 0.48

MLP_NN

MSE

0.35 0.12 0.26 0.22 0.32 0.22 0.25 0.24 0.22 0.15 0.25 0.22

GFF_NN 0.27 0.41 0.27 0.21 0.31 0.21 0.21 0.20 0.48 0.17 0.27 0.19

PCA_NN 0.55 0.34 0.25 0.09 0.37 0.32 2.04 0.31 0.27 0.22 0.28 0.23

MLP_NN

MAE

0.48 0.30 0.38 0.38 0.46 0.35 0.38 0.36 0.36 0.32 0.38 0.36

GFF_NN 0.39 0.52 0.39 0.35 0.44 0.35 0.35 0.35 0.56 0.33 0.39 0.33

PCA_NN 0.63 0.46 0.38 0.25 0.52 0.44 1.35 0.41 0.39 0.36 0.39 0.36

MLP_NN

RE

10.85 6.61 8.38 8.20 10.26 7.68 8.34 8.12 7.92 6.91 8.29 7.98

GFF_NN 8.58 11.70 8.37 7.95 9.52 7.70 7.70 7.79 11.70 7.22 8.35 7.36

PCA_NN 14.17 10.25 8.32 5.46 11.31 9.87 28.73 8.84 8.50 7.89 8.37 8.29
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The best model was obtained using conjugate gradient 
learning algorithm and sigmoid axon transfer function with 
the 1 hidden neuron layer, learning rate 1 and momentum 
constant 0.7 PCA_NN model (providing lowest MSE: 0.04, 
RMSE: 0.21, MAE: 0.17, RE: 4.05 for validation data set, 
lowest MSE: 0.09, RMSE: 0.30, MAE: 0.25, RE: 5.46 for test 
data set). Figure 3 shows the test and validation data set 
analysis results using the MLP_NN, GFF_NN and PCA_NN 
models. Figure 4 illustrates scatter plots of the observed 
and calculated flood discharges by MLP_NN, GFF_NN and 
PCA_NN models for both validation and test data sets. It is 
clear that the optimum model exhibits the minimum error 
values, as explained above. Flood discharges for different 
return periods can be calculated with this optimum PCA_NN 
model for EBSB. RMSE values of the PCA_NN models having 
different number of principal components (PC) are presented 
in tables 5 and 6, respectively. The accuracy of the model did 
not improve by an increased number of hidden layers. Error 
values of the models for the test and validation data sets 
decreased with an increase in PC number, as shown in tables 
5 and 6. The lowest error value was obtained from the model 
in which 6 PC used.

Basic 
component

3PE 6PE 9PE

Tanj. akson. Sigm. akson. Tanj. akson. Sigm. akson. Tanj. akson. Sigm. akson.

BP CG BP CG BP CG BP CG BP CG BP CG

2 PC 0.45 0.46 0.46 0.46 0.44 0.40 0.46 0.45 0.44 0.44 0.45 0.45

3 PC 0.44 0.45 0.46 0.46 0.47 0.45 0.45 0.45 0.44 0.42 0.45 0.45

4 PC 0.42 0.40 0.44 0.37 0.41 0.34 0.44 0.37 0.42 0.42 0.43 0.38

5 PC 0.36 0.36 0.45 0.39 0.39 0.39 0.43 0.39 0.39 0.38 0.43 0.40

6 PC 0.28 0.28 0.39 0.21 0.29 0.34 0.44 0.30 0.39 0.36 0.39 0.30

Table 5. RMSE values of PCA_NN with different PC for validation data set 

Table 6. RMSE values of PCA_NN with different PC for test data set 

Basic compo-
nent

3PE 6PE 9PE

Tanj. akson. Sigm. akson. Tanj. akson. Sigm. akson. Tanj. akson. Sigm. akson.

BP CG BP CG BP CG BP CG BP CG BP CG

2 PC 0.64 0.62 0.64 0.65 0.61 0.56 0.65 0.67 0.60 0.60 0.64 0.64

3 PC 0.54 0.62 0.65 0.66 0.57 0.62 0.64 0.62 0.57 0.52 0.65 0.63

4 PC 0.51 0.61 0.54 0.60 0.58 0.61 0.53 0.64 0.56 0.53 0.53 0.56

5 PC 0.65 0.73 0.57 0.54 0.52 0.71 0.54 0.54 0.57 0.63 0.53 0.55

6 PC 0.74 0.59 0.50 0.30 0.61 0.57 1.43 0.56 0.52 0.47 0.52 0.48

Figure 4. 
Comparison of observed and computed results 

by PCA_NN, MLP_NN, and GFF_NN models for: 
a) validation; b) test 
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5. Conclusions

The estimation of flood discharges is an important issue in 
hydrology and water resources engineering. The use of regional 
information to estimate flood discharges at sites with little or 
no observed data has become increasingly important for the 
flood control and planning of hydraulic structures, especially in 
Turkey.
A number of independent variables related to catchment 
meteorological and hydrologic characteristics were tested 
and six of them were found to be the most appropriate. These 
were the drainage area, main stream slope, elevation, stream 
density, mean annual rainfall, and return periods. Models were 
developed with these parameters by using three different ANN 
approaches. MLP_NN, GFF_NN and PCA_NN models were 
applied to previously recorded annual maximum flow data of 
the EBSB in Turkey. Out of the three methods, the best results 
were obtained from PCA_NN. Additionally, the error values in 
the models of CG algorithm were lower when compared to BP 
algorithm. Of the two transfer functions used in the models, the 
sigmoid axon transfer function had influence on the falling of 
the error values. The best results for the both validation and test 
data sets were obtained from the 3-hidden layered PCA_NN 

method trained with CG algorithm using sigmoid axon transfer 
function. The lowest error value was derived from the model in 
which 6 basic components were used. The results showed the 
feasibility and applicability of these models. 
It can be concluded from the study conducted in this paper 
that the best model for predicting flood discharge includes the 
following parameters:
 - Sigmoid axon transfer function
 - One hidden layer with 3 PEs
 - Epoch value of 10 000
 - Momentum and learning rate values of 0.7 and 1, respectively.

The optimum model can be applied for flood quantile estimation 
in EBSB and the results can be further developed for different 
hydrologically and physically similar basins in Turkey. This 
study will help the authorities to use valuable knowledge about 
flood peak discharges of the basin for any return periods when 
hydraulic structures and settlements projects are at the design 
stage. Thus, the results of this study may help decrease the risk 
of failure for water structures and reduce severe environmental 
consequences by flooding in the basin. The findings from this 
research can be used in the development of regional flood 
estimation techniques for other basins.
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