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strength of concrete

Compressive strength of concrete is an important parameter in concrete design. Accurate 
prediction of compressive strength of concrete can lower costs and save time. Therefore, 
thecompressive strength of concrete prediction performance of artificial intelligence 
methods (adaptive neuro fuzzy inference system, random forest, linear regression, 
classification and regression tree, support vector regression, k-nearest neighbour and 
extreme learning machine) are compared in this study using six different multinational 
datasets. The performance of these methods is evaluated using the correlation coefficient, 
root mean square error, mean absolute error, and mean absolute percentage error criteria. 
Comparative results show that the adaptive neuro fuzzy inference system (ANFIS) is 
more successful in all datasets.
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Prethodno priopćenje

Mehmet Timur Cihan

Usporedba metoda umjetne inteligencije za predviđanje tlačne čvrstoće betona 

Tlačna čvrstoća betona je značajan parametar u projektiranju betona. Točnim predviđanjem 
tlačne čvrstoće betona mogu se smanjiti troškovi i ostvariti uštede u vremenu. U ovom 
radu se na temelju šest raznih međunarodnih nizova podataka uspoređuje uspješnost 
predviđanja vrijednosti tlačne čvrstoće betona primjenom nekoliko metoda baziranih 
na umjetnoj inteligenciji (prilagodljivi neuroneizraziti sustav, algoritam slučajnih šuma, 
linearna regresija, klasifikacijsko i regresijsko stablo, regresija potpornih vektora, metoda 
najbližih susjeda i stroj za ekstremno učenje). Učinak tih metoda procjenjuje se pomoću 
koeficijenta korelacije, korijena srednje kvadratne pogreške, srednje apsolutne pogreške 
i srednje apsolutne postotne pogreške. Usporedni rezultati pokazuju da je prilagodljivi 
neuroneizraziti sustav uspješniji od ostalih u svim nizovima podataka.
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1. Introduction

Concrete is the most extensively used construction material 
in the world due to its various advantages. Large scale 
production of concrete contributes to depletion of natural 
resources (sand, gravel or crushed stone). Furthermore, the 
emission of greenhouse gases increases with an increase 
in consumption of cement [1]. Supplementary materials 
are therefore used in concrete production to decrease 
consumption of cement and natural resources. 
Prediction of mechanical properties of construction 
materials has become an important area of research in 
materials science and civil engineering. In practice, concrete 
is classified according to compressive strength. Therefore, 
an accurate estimation of compressive strength of concrete 
is important. Concrete is made up of different constituent 
materials (aggregate, cement, water and supplementary 
materials), and these materials are randomly distributed in 
concrete matrix. Due to this complex structure of concrete 
matrix, the number of effect variables affecting the concrete 
compressive strength is quite high and, therefore, the 
predictability of the concrete compressive strength is quite 
low [2, 3]. However, with the help of developing technology, 
the prediction accuracy of concrete compressive strength 
can be increased by artificial intelligence (AI) methods.
In recent years, many studies have been made in order 
to predict compressive strength of concrete based on 
its constituents [4-19] and also using simultaneously 
controllable effect variables [20, 21].
 Due to sustainable production and cost, various additives 
(supplementary materials) are used in concrete production, 
which makes it difficult to achieve the desired concrete 
properties. Therefore, it is important to determine the 
usability of AI methods for a highly accurate prediction of 
concrete compressive strength in the design of concretes 
containing supplementary materials. Topçu and Sarıdemir 
[4] and Başyiğit et al. [6] used artificial neural networks 
and fuzzy logic models for predicting compressive strength 
of concrete containing fly ash. In addition, Sarıdemir [5] 
compared artificial neural networks and fuzzy logic models 
for prediction of compressive strength of mortars containing 
metakaolin at the age of 3, 7, 28, 60, and 90 days. Sarıdemir [7] 
developed two models in the gene expression programming 
(GEP) approach for the prediction of compressive strength 
of concrete containing rice husk ash at the age of 1, 3, 7, 
14, 28, 56 and 90 days. Gilan [22] developed the support 
vector regression (SVR) [23] and particle swarm optimization 
(PSO) [24, 25] model for the prediction of the compressive 
strength, and used rapid chloride penetration test results 
of concretes containing metakaolin. Atici [26] used multiple 
regression analysis and an artificial neural network to 
predict compressive strength of concrete containing various 
amounts of supplementary materials (blast furnace slag and 
fly ash) at different curing times (3, 7, 28, 90, and 180 days).

The analysis of optimization problems of high-strength 
concrete is important in concrete industry, and so these 
problems are investigated with multi-objective optimization 
based on regression analysis, artificial neural network (ANN), 
and gene expression programming (GEP) [27]. Moreover, 
support vector machine (SVM), fuzzy logic algorithm and 
ANN are used to predict elastic moduli of normal and high 
strength concrete  [28-30].
Artificial intelligence methods are also used to determine 
properties (compressive strength) of self-compacting 
concrete. Zhang et al. [10] proposed a beetle antennae 
search (BAS) algorithm based random forest model to 
significantly predict compressive strength of the lightweight 
self-compacting concrete. Siddique et al. [9] compared data 
taken from literature and developed experimentally, using 
neural network techniques for the prediction of compressive 
strength of self-compacting concrete. Moreover, Ghafoori 
et al. [31] compared the linear-nonlinear regressions and 
neural network for predicting the rapid chloride permeability 
of self-consolidating concretes based on proportions of their 
constituents.
Sobhani et al. [8] presented the use of more reliable ANN 
and ANFIS models for the prediction of 28-days compressive 
strength of no-slump concrete. Tsai [32] proposed the hybrid 
multilayer perceptron models for predicting strength of 
concrete specimens. Tanyildizi and Çevik [33] used genetic 
programming for predicting the compressive and splitting 
tensile strength of lightweight concrete (cement contents: 
400 and 500 kg/m3) exposed to high temperatures. Feng 
et al. [11] proposed a new approach based on the adaptive 
boosting algorithm for predicting compressive strength of 
concrete.
A general successful prediction model, which can be applied 
regardless of the dataset, is presented in this study. Six 
different datasets with different input variables and sample 
sizes are used for this purpose.  One of these datasets was 
produced by the author.  ANFIS, random forest (RF), linear 
regression, classification and regression tree, support vector 
regression, k-nearest neighbour and extreme learning 
models, are used to predict compressive strength of concrete. 
The correlation coefficient (R), root mean square error (RMSE), 
mean absolute error (MAE), mean absolute percentage error 
(MAPE) and P-value criteria are used to evaluate the success 
of AI methods used in this study.

2. Methods and experimental setting

2.1. Prediction models

In most engineering problems, the variables that make up 
the problem are dependent on each other. When one of the 
variables changes statistically, other variables do not change 
to the same extent. It is very important to reveal this causal 
relationship between the variables. Creation of the regression 
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equation for predicting the most accurate way of estimating the 
value of a random response variable depending on the value of 
another effect variable or variables is called regression analysis.
Nowadays, the use of artificial intelligence methods is rapidly 
increasing due to reasons such as the size of the datasets, 
interaction of multiple complex variables, nonlinear relationship 
between the input and output (target) variables, and predictive 
accuracy performance of the output variable.
Regression analysis is a subfield of supervised learning. In 
the supervised learning process, the algorithm is trained 
with a dataset whose inputs correspond to the outputs. The 
independent test dataset is used to evaluate the prediction 
success of the trained algorithm. The flow diagram for 
regression analysis is given in Figure 1. Statistical computations 
and development of models were carried out using the R 
programming language [34].

2.1.1. Random Forest (RF)

The random forest method is an ensemble learning method 
used for classification and regression. In this method, many 
decision trees are created during the training and then an 
average of the results obtained by these decision trees is used 
during prediction. The most important advantage of the random 
forest method is that it provides a solution to the problem of 
excessive adaptation in decision trees. This method can easily 
be parallelized as it is simple, and is more resistant to extreme 
values and noise. It is also more successful than other ensemble 
learning methods [35, 36]. In this study, caret [37] R package 
was used for the implementation.

2.1.2. Classification and Regression Trees (CART)

CART is a decision tree algorithm. It is used for solving 
classification and regression problems. The purpose of the 
decision tree is to create a tree model that can estimate the 
output variables value using input variables in the dataset. 
The CART algorithm is a decision tree algorithm that uses the 
Gini coefficient as the division criterion, utilizing the binary-
division type, using categorical or continuous variables 
[38]. In this study, rpart [39] R package was used for the 
implementation.

2.1.3.  Support Vector Regression 
(SVR)

In the Support Vector Regression, the 
aim is to find the most possible linear 
function that estimates a group of data 
in space with as much error as epsilon 
(a margin of tolerance). In case the data 
can be separated linearly, the data can 
be separated directly by a hyperplane 
which maximizes the margin. In case the 
data cannot be separated linearly, the 

data is mapped to a higher dimensional space with the kernel 
function. Thus, the data is provided for linear separation. As 
a result, it has F(x) function for converting training inputs into 
outputs [23]. In this study, e1071 [40] R package was used for 
the implementation.

2.1.4. K-Nearest Neighbour (K-NN)

K-NN is a sample-based algorithm that can be used for solving 
classification and regression problems. Distances are calculated 
between the test data sample and all samples in the training 
dataset, in order to find the nearest “k” sample. Then the output 
variable is calculated by averaging these nearest samples [41]. In 
this study, FNN [42] R package was used for the implementation.

2.1.5. Extreme Learning Machines (ELM)

Extreme learning machines are basically similar to ANN with one 
hidden layer. Therefore, the working principle of ELM is almost 
the same as the working principles of ANN. In the ELM training 
phase, weights and bias values are assigned from the input layer 
to the hidden layer randomly, and these values do not update 
in the whole process [43]. As in artificial neural networks, an 
activation function is also needed for the ELM. Various types of 
activation functions are available, and can be selected by the 
user [44]. In this study, elmNNRcpp [45] R package was used for 
the implementation.

2.1.6. Linear Regression (LR)

LR is used in many studies due to its ease of use, efficiency, and 
effectiveness. Simple linear regression equation  (y = w0 + w1x1 
+ w2x2 + ... + wnxn) expresses a linear relationship between an 
independent variable (x1, x2, …, x3 input variable) and a dependent 
variable (y, output variable). This model fits straight-line models 
between each input variable and output variable [46]. In this 
study, stats [47] R package was used for the implementation.

2.1.7. Adaptive Neuro Fuzzy Inference System (ANFIS)

The ANFIS method is based on the fuzzy inference system. ANFIS 
is a model that uses fuzzy logic and artificial neural networks. 

Figure 1. Flow diagram for regression analysis



Građevinar 6/2021

620 GRAĐEVINAR 73 (2021) 6, 617-632

Mehmet Timur Cihan

This method is an effective prediction model between neural-
fuzzy systems and machine learning techniques [48]. ANFIS 
learning algorithm consists of the least-squares method and 
the backpropagation algorithm. Input samples are produced in 
the first step of the learning process, and the best secondary 
parameters are determined using the least squares means 
method. Here, the primary parameters are assumed to be 
constant. In the second step, the input samples are duplicated 
and replaced with the gradient descent method of the primary 
parameters, assuming that the secondary parameters are 
constant. This process is then repeated [49-51].  In this study, 
frbs [52] R package was used for the implementation. The ANFIS 
structure is given in Figure 2.
In Layer 1 (fuzzification layer), the output of each node is a 
membership function such as Gaussian, triangle, trapezoidal, 
etc. In Layer 2 (rule layer), the output of each rule node is 
multiplied by the membership grades using product operation 
and the firing strength rule is applied in calculation. In Layer 3 
(normalization layer), all nodes coming from the rule layer are 
accepted as input values and the normalized firing strength 
of each rule is calculated. In Layer 4 (defuzzification layer), 
weighted values of the rules are calculated. The overall 
output, being summation of all the rules, is calculated in Layer 
5 (summation layer). This layer contains only one fixed node 
[53].

2.2. Performance measures and validation methods

Various splitting strategies can be applied to train the model and 
test its performance [54, 55]. The validity of the learned model 
is different from the algorithm validity. The generalization ability 
of the model depends on its performance on unseen test data. 
In this study, the dataset was split using the 2/3 + 1/3 approach. 
Randomly selected 2/3 of the dataset were used in model 
training and the remaining 1/3 was used for the performance 
of learned models. Models were run 10 times and after 10 runs, 
the misprediction error ranges of the models were given (Table 
4). Then, in order to compare the prediction performance of all 
models, the datasets were randomly separated from the same 

point with the seed approach. R, RMSE, 
MAE, and MAPE performance measures 
were used for validating performance of 
the learned AI models on unseen test sets 
(Table 5). The analyses were conducted in 
R programming [34].
Correlation coefficient (R): The R measure 
shows the degree of linear correlation 
between observed (actual/measured) 
and predicted compressive strength 
values. The R-value ranges from 0 to 1. 
As the prediction accuracy of the model 
increases, the R-value approaches 1. It is 
expressed as follows:

 (1)

where O is the observed value of compressive strength,  is the 
mean of the observed value, P is the predicted compressive 
strength value of the developed artificial intelligence model and 

 is the mean of the predicted value.
Root mean square error (RMSE): Indicates the standard 
deviation of the difference between the observed and predicted 
compressive strength values. Smaller RMSE value is desirable. It 
is expressed as follows:

 (2)

Mean absolute error (MAE): This criterion is the average of the 
absolute difference between the observed and the predicted 
compressive strength value.  A smaller MAE value indicates a 
better model fit. It is expressed as follows:

 (3)

Mean absolute percentage error (MAPE): MAPE is the mean of 
the absolute percentage errors (observed value minus predicted 
value) of predicted compressive strength values. A smaller MAPE 
value indicates a better model fit. It is expressed as follows:

 (4)

2.3. Data description

The prediction accuracy of the models was evaluated using 
published multinational datasets [22, 56-58]. For all datasets, 
compressive strength is the output variable, and input variables 
vary according to datasets. The statistics of the datasets is 
given in Table 1.

Figure 2. ANFIS structure
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Attribute Abb. Unit Min Max Average SD Direction

Attribute Dataset 1: Turkey (sample size: 104)

Cement C kg/m3 330 345 337.6 6.37 Input

Cement compressive strength fcc MPa 34.4 55.1 44.95 9.00 Input

Super-plasticizer SP kg/m3 3.96 4.83 4.376 0.30 Input

Water W kg/m3 142.8 217 180.2 18.22 Input

Fine aggregate FA kg/m3 827 1292 1078 135.72 Input

Coarse aggregate CA kg/m3 543 1009 733.1 158.14 Input

Concrete compressive strength fc MPa 19.86 53.87 36.7 8.20 Output

Dataset 2 [22]: Iran (sample size: 100)

Cement C kg/m3 320 400 358 24.62 Input

Metakaolin M kg/m3 0 80 42 24.62 Input

Water W kg/m3 140 200 173.6 18.61 Input

Coarse aggregate CA kg/m3 765 954 881.3 78.54 Input

Fine aggregate FA kg/m3 796 1017.5 884.7 95.83 Input

Age A dana 7 180 76.25 67.56 Input

Concrete compressive strength fc MPa 19 82.5 49.29 13.64 Output

Dataset 3 [56]: Hong Kong (sample size: 144)

Fly ash FlyA  % 0 55 25 19.11 Input

Silica fume SF  % 0 5 1.88 2.43 Input

Total cementitious material TCM kg/m3 400 500 436.7 45.13 Input

Fine aggregate FA kg/m3 536 724 639.2 54.71 Input

Coarse aggregate CA kg/m3 1086 1157 1125 29.51 Input

Water W lit/m3 150 205 171.7 24.00 Input

High rate water reducing admixture HRWRA lit/m3 0 13 4.89 4.04 Input

Age A dana 3 180 60.67 61.31 Input

Concrete compressive strength fc MPa 7.8 107.8 56.66 23.71 Output

Dataset 4 [57]: Sjeverna Koreja (vsample size: 324)

Water W kg/m3 160 180 170 8.18 Input

Cement C kg/m3 284 600 417.8 77.03 Input

Fine aggregate FA kg/m3 552 951 767.7 85.45 Input

Coarse aggregate CA kg/m3 845 989 898.5 43.82 Input

Super-plasticizer SP kg/m3 0 2 1.03 0.55 Input

Concrete compressive strength fc MPa 37.5 73.6 51.93 9.45 Output

Dataset 5 [58]: Južna Koreja (vsample size: 104)

Water to binder ratio W/B  % 30 45 37.6 5.57 Input

Water W kg/m3 160 180 170 8.24 Input

Fine aggregate ratio FAR  % 37 53 46 3.64 Input

Air entraining agent AEA kg/m3 0.04 0.08 0.05 8.30 Input

Fly ash FlyA  % 0 20 10.1 0.01 Input

Super-plasticizer SP kg/m3 1.89 8.5 4.48 2.30 Input

Concrete compressive strength fc MPa 38 74 52.68 9.43 Output

Table 1. Statistics of the datasets
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Dataset 1 was produced to determine predictability of fc 
and slump by considering the simultaneously controllable 
effect variables for normal concretes. The output variable 
in dataset 1 was taken from references [20, 21, 60]. Input 
variables in dataset 1 were selected as quantities of 
constituent materials of the concrete samples produced 
within the scope of the PhD thesis [60]. These concrete 
constituent materials have not so far been published or used 
in any research. In normal concrete mixes, three different 
types of cement were used as binding materials, and 
superplasticizer was used to ensure sufficient workability. 
Properties of binding materials and superplasticizer used in 
dataset 1 are given in Table 2. Variables of dataset 1 are 
given in Table 3. An average of three sample results was 
used for each specific mix design point in dataset 1. The 
samples were cured in lime-saturated water at 23±2 °C for 
28 days and then tested.
Dataset 2 was produced to determine the predictability 
of fc and rapid chloride penetration values of concretes 
containing metakaolin by using the hybrid support vector 
regression (SVR) - particle swarm optimization (PSO) model 
[22]. Moreover, the hybrid model was compared with an 
adaptive neural-fuzzy inference system (ANFIS) [22]. ASTM 
C150 Type-I Portland cement, and metakaolin obtained 
from three kinds of kaolin, were used in all concrete 
mixtures [22].

Dataset 3 was produced for the investigation of strength, 
compressive stress-strain relationship and fracture behaviour 
of concrete by replacing cement with fly ash and silica fume in 
certain proportions [46]. ASTM Type I Portland cement, ASTM 
Class F low calcium fly ash and silica fume were used in all 
concrete mixtures [56]. Moreover, a naphthalene-based high 
range water-reducing admixture (HRWRA) was used in mixes 
to ensure adequate workability [56]. No artificial intelligence 
method was used to analyse dataset 3 by Lam et al. [56].
Dataset 4 was produced for predicting fc of high-strength 
concrete (HSC) by using the extreme learning method [57]. 
Moreover, the results of the extreme learning method were 
compared to the results of artificial neural networks (ANN) [57]. 
Type 1 Portland cement and polycarboxylate superplasticizer 
were used in mixes [57].
Dataset 5 was produced for reducing the number of trial 
mixtures of the high-performance concrete mixtures (concretes 
with a compressive strength variation range of 40-80 MPa) by 
using a genetic algorithm [58]. ASTM Type I Portland cement, 
class F fly ash, and naphthalene superplasticizer, were used in 
mixes [58].
Dataset 6 was produced for predicting fc of high-performance 
concrete by using artificial neural networks (ANN) [59]. ASTM 
Type I Portland cement, fly ash, blast furnace slag powder, and 
superplasticizer containing naphthalene-formaldehyde and 
fatty acid copolymer, were used in mixes [59].

Attribute Abb. Unit Min Max Average SD Direction

Dataset 6 [59]:Tajvan (vsample size: 1030)

Cement C kg/m3 102 540 281.2 104.51 Input

Blast-furnace slag BFS kg/m3 0 359.4 73.9 86.28 Input

Fly ash FlyA kg/m3 0 200 54.19 63.00 Input

Water W kg/m3 121.8 247 181.6 21.36 Input

Super-plasticizer SP kg/m3 0 32.2 6.2 5.97 Input

Coarse aggregate CA kg/m3 801 1145 972.9 77.75 Input

Fine aggregate FA kg/m3 594 992.6 773.6 80.18 Input

Age A dani 1 365 45.66 63.17 Input

Concrete compressive strength fc MPa 2.33 82.6 35.82 16.71 Output

Table 1. Statistics of the datasets - continued 

Table 2. Binding materials and superplasticizer properties in dataset 1

Binding materials and superplasticizer Particle density
[kg/m3]

fcc
[MPa]

Blaine specific surface 
[m2/kg]

Cement (C)

CEM V/A (S-P) 32.5 N 2990 34.40 416.0

SDC 32.5 R 3160 44.75 339.0

CEM I 42.5 R 3140 55.10 379.0

Superplasticizer (SP) 1100 - -

fcc - compressive strength of cement mortars
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Table 3. Laboratory dataset 1

No C [kg/m3] fcc [MPa] SP [kg/m3] W [kg/m3] FA [kg/m3] CA [kg/m3] fc [MPa]

1 337.5 44.75 4.39 199.00 1162.92 585.83 38.76

2 337.5 44.75 4.39 159.70 1233.39 621.33 36.17

3 337.5 44.75 4.39 199.00 1162.92 585.83 38.12

4 337.5 44.75 4.39 159.70 1233.39 621.33 36.06

5 337.5 44.75 4.39 199.00 1162.92 585.83 38.45

6 337.5 44.75 4.39 159.70 1233.39 621.33 35.19

7 330 34.4 3.96 184.58 1152.54 620.60 28.59

8 330 34.4 3.96 168.66 1252.08 589.21 24.38

9 345 34.4 4.83 191.04 1183.06 556.74 30.44

10 345 34.4 4.83 172.14 1164.50 627.04 23.37

11 330 55.1 4.62 150.75 1292.34 608.16 42.47

12 330 55.1 4.62 208.96 1117.94 601.97 39.27

13 345 55.1 4.14 153.23 1207.19 650.02 39.05

14 345 55.1 4.14 217.91 1157.01 544.48 39.51

15 330 34.4 4.62 152.74 1227.89 661.17 28.49

16 330 34.4 4.62 208.46 1181.37 555.94 23.57

17 345 34.4 4.14 164.68 1262.91 594.31 27.56

18 345 34.4 4.14 217.91 1105.65 595.35 22.86

19 330 55.1 3.96 192.04 1211.48 570.11 42.48

20 330 55.1 3.96 169.65 1208.48 650.72 37.58

21 345 55.1 4.83 200.50 1133.46 610.32 42.19

22 345 55.1 4.83 182.59 1239.22 583.16 37.17

23 337.5 44.75 4.39 204.48 1146.71 577.67 37.84

24 337.5 44.75 4.41 204.48 1146.71 577.67 35.86

25 337.5 44.75 4.41 171.64 1225.45 617.33 32.59

26 337.5 44.75 4.41 204.48 1146.71 577.67 36.66

27 337.5 44.75 4.41 171.64 1225.45 617.33 35.26

28 337.5 44.75 4.41 171.64 1225.45 617.33 33.58

29 337.5 44.75 4.41 191.04 1155.31 582.00 37.00

30 337.5 44.75 4.42 164.68 1230.08 619.67 32.91

31 330 34.4 4.42 176.62 1148.01 618.16 28.94

32 330 34.4 4.42 173.13 1249.37 587.94 22.80

33 345 34.4 4.42 187.06 1173.25 552.12 29.34

34 345 34.4 4.42 178.11 1160.95 625.12 24.43

35 330 55.1 4.42 155.22 1288.96 606.57 42.17

36 330 55.1 4.42 193.03 1127.96 607.36 42.08

37 345 55.1 4.43 159.70 1202.66 647.59 38.62

38 345 55.1 4.43 202.99 1153.97 543.04 41.81

39 330 34.4 4.43 157.21 1224.98 659.60 26.38

40 330 34.4 4.43 193.53 1169.19 550.21 24.36

41 345 34.4 4.43 168.16 1260.20 593.03 27.44

42 345 34.4 4.43 201.49 1096.27 590.30 25.13

43 330 55.1 4.44 174.63 1210.13 569.47 43.25

44 330 55.1 4.44 173.63 1205.90 649.33 39.29
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No C [kg/m3] fcc [MPa] SP [kg/m3] W [kg/m3] FA [kg/m3] CA [kg/m3] fc [MPa]

45 345 55.1 4.44 182.09 1135.40 611.37 44.19

46 345 55.1 4.44 186.07 1236.86 582.05 37.68

47 330 34.4 4.44 201.00 1122.14 604.23 26.56

48 337.5 34.4 4.44 213.93 1095.95 590.12 23.58

49 330 34.4 4.44 211.44 1130.83 569.67 23.44

50 335 34.4 4.45 197.51 1226.71 577.27 20.47

51 345 55.1 4.45 209.45 1209.11 569.00 31.85

52 345 55.1 4.39 192.54 1212.55 610.83 35.92

53 335 55.1 4.83 192.04 1247.68 587.14 35.13

54 340 55.1 4.02 190.05 1221.09 657.51 36.58

55 330 55.1 4.42 195.52 1167.55 588.17 39.97

56 345 34.4 3.96 205.47 1158.71 545.27 27.02

57 345 55.1 4.49 209.45 1106.94 596.04 39.79

58 345 34.4 4.83 209.45 1172.91 631.57 19.86

59 337.5 44.75 4.49 187.56 903.79 868.35 42.57

60 337.5 44.75 4.39 187.56 903.79 868.35 44.59

61 337.5 44.75 4.39 164.18 978.64 940.26 45.67

62 337.5 44.75 4.39 187.56 903.79 868.35 42.84

63 337.5 44.75 4.39 164.18 978.64 940.26 43.68

64 337.5 44.75 4.39 164.18 978.64 940.26 42.88

65 330 34.4 4.39 174.13 863.04 934.97 34.22

66 330 34.4 3.96 169.65 1025.19 873.31 29.63

67 345 34.4 3.96 183.08 949.97 809.23 32.31

68 345 34.4 4.83 174.63 889.31 963.42 29.19

69 330 55.1 4.83 152.74 1056.9 900.32 53.87

70 330 55.1 4.62 192.04 847.76 918.41 44.07

71 345 55.1 4.62 155.72 920.12 996.80 53.11

72 345 55.1 4.14 156.22 920.12 996.80 52.92

73 345 55.1 4.14 200.00 934.39 795.96 43.23

74 330 34.4 4.14 148.26 928.48 1005.85 33.46

75 330 34.4 4.62 189.55 946.75 806.49 29.33

76 345 34.4 4.62 159.20 1029.22 876.75 33.31

77 345 34.4 4.14 197.51 826.99 895.9 29.00

78 330 55.1 4.14 173.13 977.64 832.81 45.89

79 330 55.1 3.96 164.18 914.63 990.85 44.37

80 345 55.1 3.96 180.10 854.69 925.91 46.40

81 345 55.1 4.83 176.12 1010.96 861.18 47.37

82 337.5 44.75 4.83 165.17 978.39 940.02 42.92

83 337.5 44.75 4.39 187.06 903.79 868.35 44.01

84 337.5 44.75 4.39 187.06 903.79 868.35 42.09

85 337.5 44.75 4.39 165.17 978.39 940.02 42.55

86 337.5 44.75 4.39 165.17 978.39 940.02 41.75

87 337.5 44.75 4.39 187.06 903.79 868.35 42.62

88 330 34.4 4.39 173.63 863.52 935.48 33.10

89 330 34.4 3.96 168.16 1026.00 874.00 29.75

Table 3. Laboratory dataset 1 - continued 
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3. Results and discussion

The correlation coefficient gives information on the effect 
level and direction of the linear relationship between two 
parameters. The cross-correlation matrix of the six datasets is 
shown in Figure 3.
According to the correlation results of dataset 1, the output 
variable fc is highly correlated with the effect variable fcc (0.81).  
This result is similar to results obtained in previous studies [20, 
21, 60]. In normal concretes, the effect of cement content on 
the concrete compressive strength is expected to be high. In 
addition, the water/cement ratio is one of the most important 
parameters affecting fc. The variation interval of cement content 
is very low (345-330 = 15 kg), while the variation of the water/
cement ratio is mainly due to the variation in the quantity of 
water. Therefore, while the correlation coefficient of water 
content (W) is in the order of -0.26, the correlation coefficient 
of cement content (C) is equal to approximately zero (-0.01). 
The coarse aggregate is positively correlated (0.42) with fc 
since it forms the bearing frame of normal concrete. As fine 
aggregate forms the mortar phase in normal concrete, there is 
a negative correlation (-0.39) between the fine aggregate and 
fc. The correlation coefficient of fine aggregate is 0.01 when 
the simultaneously controllable variables are selected as input 
variables [20]. It is therefore quite difficult to generalize the 
correlation coefficient because the effect levels of the input 
variables vary according to the selected input variables and 
variation intervals.
The correlation coefficient results of dataset 2 show that the 
response variable fc is correlated with effect variables A (0.68), 
W (-0.55), FA (0.39), C (0.14), and M (-0.14). The correlation 
coefficient of CA is quite low (-0.05). The highest correlation 
coefficient of input variable A explains the contribution of 

metakaolin to strength increase until late ages. However, 
when the variation interval of A (7-180) is considered, it can be 
said that the correlation coefficient of A does not only contain 
the effect of metakaolin but also the contribution of cement, 
especially to 28-day strength. The increase in the amount 
of M and W decreases the compressive strength (negative 
correlation, -0.14 and -0.55, respectively). In mixtures with high 
amounts of fine material, the variability of water content has a 
greater effect on fc. 
In dataset 3, the response variable fc is correlated with all effect 
variables (FlyA: -0.34, SF: 0.10, TCM: 0.40, FA: 0.59, CA: -0.4, W: 
-0.57, HRWRA: 0.49, A: 0.68). The lowest correlation coefficient 
belongs to the SF input variable. The increase in the amount of 
SF, which exhibits bindingness due to its very fine structure and 
high amorphous silica content, caused only 0.10 increase in fc 
due to the fact that the SF variation interval has a range of 0% 
- 5%. Furthermore, since A has a 3-180 days variation interval 
(correlation coefficient of A is 0.68), the correlation coefficients 
of mineral additive materials and total binder material with the 
compressive strength do not reflect the actual effect levels. 
Therefore, classification should be preferred when determining 
the change interval of A, especially in concretes with mineral 
admixture. Due to the water/binder ratio in concretes with 
mineral admixtures, the variability in water content significantly 
affects the compressive strength (correlation coefficient of W is 
-0.57). In addition, the fc and HRWRA exhibit a positive correlation 
of about 0.49 to achieve workability due to the increased 
fineness of total binder materials. FA and W variables have a 
negative correlation (-0.77). This does not reflect the physical 
interaction between the amount of fine material and water 
requirement. However, when the positive correlation between 
FA and HRWRA variable (0.62) is taken into consideration, it can 
be seen that the loss of workability due to fineness is achieved 

No C [kg/m3] fcc [MPa] SP [kg/m3] W [kg/m3] FA [kg/m3] CA [kg/m3] fc [MPa]

90 345 34.4 3.96 179.60 951.85 810.84 32.33

91 345 34.4 4.83 168.66 891.94 966.27 32.16

92 330 55.1 4.83 151.24 1057.7 901.00 51.57

93 330 55.1 4.62 181.59 852.78 923.84 47.62

94 345 55.1 4.62 154.23 921.07 997.83 48.18

95 345 55.1 4.14 189.55 940.30 801.00 46.41

96 330 34.4 4.14 142.79 931.34 1008.96 34.53

97 330 34.4 4.62 186.07 948.36 807.86 28.43

98 345 34.4 4.62 156.22 1031.1 878.35 33.09

99 345 34.4 4.14 196.02 827.94 896.94 29.06

100 330 55.1 4.14 175.62 976.30 831.66 48.60

101 330 55.1 3.96 162.19 983.55 837.84 50.22

102 330 55.1 3.96 163.18 915.10 991.36 43.65

103 345 55.1 3.96 170.15 859.46 931.08 51.11

104 345 55.1 4.83 175.12 1011.49 861.64 45.54

Table 3. Laboratory dataset 1 - continued 
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by HRWRA. The fc is positively correlated with FA (0.59) and 
negatively correlated with CA (-0.40). As expected, CA and 
HRWRA have a negative correlation (-0.48).
According to correlation results for dataset 4, the response 
variable fc is correlated with the effect variables W (-0.34), C 
(0.74), FA (-0.43), and SP (0.50). The correlation coefficient of CA 
with fc is approximately zero (-0.09). C has the highest correlation 
coefficient (0.74). In addition, the correlation coefficient of SP 
is 0.50. When the variation interval of C variable (284-600 kg) 
is taken into consideration, it can be stated that the obtained 
correlation coefficients do not reflect the actual correlation 
levels between the concrete compressive strength and other 
input variables. Therefore, the large differences in the variation 

interval of input variables should be 
considered in the evaluations.
Correlation coefficient results for dataset 
5 show that the response variable fc 
is correlated with the effect variable 
W/B (-0.91), W (-0.32), FA (-0.31), AEA 
(0.79) and SP (0.92). The correlation 
of FlyA with fc is approximately zero 
(-0.09). As the variability of W is 20 
kg/m3, workability was achieved with 
the use of SP. Therefore, SP has a high 
positive correlation with fc (0.92). In low 
strength concrete, it is stated that AEA 
will cause slight loss of strength, or will 
actually cause some strength gain as a 
result of air entrainment [58]. However, 
a high positive correlation between AEA 
and fc (about 0.79) requires taking into 
account the interaction of input variables 
depending on the variation intervals, 
in addition to the contribution of air 
entrainment to strength. 
According to correlation results for 
dataset 6, the response variable fc is 
correlated with the effect variable C 
(0.48), BFS (0.16), W (-0.31), SP (0.35), 
CA (-0.18), FA (-0.18) and A (0.60). The 
correlation of FlyA with fc is approximately 
zero (-0.08). Since the variation interval 
of A (1-365) is very wide, the input 
variable A has the highest correlation 
with fc.
In the study, after running the models 10 
times, the training and test error ranges 
are given in Table 4. In addition, datasets 
were separated from the same point in 
order to compare predictive performance 
of all models. Accuracy performances of 
all models according to R, RMSE (MPa), 
MAE (MPa), MAPE (%) and P-value criteria 
on unseen data are presented in Table 5, 

Figure 4, and Figure 5. Normalization was applied to all input 
variables before evaluation of prediction accuracy. For better 
model performance, RMSE, MAE and MAPE values should be low, 
and R value should be high.
The success of the ANFIS model in predicting the fc becomes 
evident when the six data sets are examined separately, or 
when average values obtained from all datasets are examined. 
As the ANFIS model predicted the fc value from unseen samples 
(test dataset), the predicted value is almost the same as the 
observed value (R = 0.992, RMSE = 1.81, MAE = 1.409, MAPE = 
4.06%, P<0.001). All these results indicate that the ANFIS model 
has a very strong predicting ability compared to other models.
Results obtained by the RF model are close to the ANFIS. The 

Figure 3. Cross-correlation matrix of datasets
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Table 4. Misprediction rates of AI models for training and testing data

Table 5. Performance criteria of AI models

Dataset RF [%] LR [%] CART [%] SVR [%] KNN [%] ELM [%] ANFIS [%]

Dataset 1
Training 2.4-3.1 6.4-7.6 5.5-6.4 6.2-6.7 6.9-9.5 5.5-6.3 1.7-1.9
Testing 3.7-7.7 4.0-8.6 5.8-8.7 6.8-8.5 8.9-19.9 5.8-9.6 1.6-2.1

Dataset 2
Training 4.0-5.3 13.1-15.0 10.3-13.2 13.2-15.3 7.3-8.9 9.1-13.4 3.2-3.8
Testing 4.8-12.3 11.0-19.8 8.7-18.9 9.1-19.2 10.6-20.2 10.3-14.5 2.4-5.1

Dataset 3
Training 5.2-6.4 19.5-23.3 15.6-19.5 21.3-24.5 8.8-10.3 20.8-22.7 7.5-8.1
Testing 7.3-13.6 18.5-33.2 14.3-26.9 18.8-38.8 9.7-21.9 21.2-29.7 5.5-8.6

Dataset 4
Training 0.9-1.3 3.7-4.0 4.3-5.3 3.2-3.4 1.7-2.9 3.6-3.8 1.3-1.4
Testing 1.3-3.3 3.3-4.4 5.2-6.4 3.0-3.7 6.7-9.0 3.6-4.0 1.2-1.5

Dataset 5
Training 1.2-1.6 2.6-3.1 2.9-4.5 2.3-2.9 3.5-4.5 2.2-2.7 1.2-1.4
Testing 1.5-3.3 2.0-4.5 2.2-5.8 1.9-3.1 5.0-8.0 3.0-4.8 1.1-1.5

Dataset 6
Training 5.7-6.2 30.7-32.0 23.6-25.3 21.8-23.6 16.4-17.7 30.6-31.2 8.9-10.5
Testing 10.8-13.8 29.7-35.0 24.5-33.3 20.9-25.4 18.8-28.3 20.8-35.0 9.9-11.2

Dataset Metric RF* LR* CART* SVR* K-NN* ELM* ANFIS*

Dataset 1:
Turkey

R 0.981 0.962 0.967 0.964 0.910 0.965 0.996

RMSE 2.307 3.011 2.883 3.011 4.293 2.706 0.896

MAE 1.851 2.454 2.254 2.506 2.936 2.218 0.696

MAPE 6.13 % 6.81 % 7.11 % 7.13 % 9.89 % 6.11 % 1.88 %

Dataset 2: 
Iran

R 0.929 0.820 0.863 0.835 0.858 0.852 0.991

RMSE 5.235 8.211 6.936 7.679 7.141 7.692 1.910

MAE 3.873 6.690 5.609 6.083 5.340 6.033 1.561

MAPE 8.88 % 14.37 % 11.95 % 13.37 % 11.64 % 12.98 % 3.30 %

Dataset 3: 
Hong Kong

R 0.969 0.921 0.904 0.927 0.945 0.921 0.993

RMSE 6.335 9.880 10.949 9.464 8.710 9.905 3.262

MAE 4.925 8.804 8.452 8.203 7.032 8.889 2.518

MAPE 14.96 % 23.19 % 21.97 % 23.74 % 23.57 % 23.32 % 6.35 %

Dataset 4: 
South Korea

R 0.988 0.97 0.907 0.976 0.952 0.972 0.996

RMSE 1.364 2.161 3.856 1.933 2.847 2.090 0.785

MAE 0.944 1.849 2.913 1.595 2.111 1.768 0.676

MAPE 1.91 % 3.73 % 5.66 % 3.20 % 4.34 % 3.56 % 1.34 %

Dataset 5: 
North Korea

R 0.976 0.974 0.91 0.974 0.948 0.976 0.997

RMSE 1.917 2.085 3.966 2.052 2.936 1.967 0.745

MAE 1.143 1.473 2.585 1.413 2.373 1.566 0.651

MAPE 2.32 % 2.93 % 4.95 % 2.75 % 4.59 % 3.08 % 1.29 %

Dataset 6: 
Taiwan

R 0.953 0.8 0.833 0.87 0.837 0.784 0.981

RMSE 5.157 10.134 9.325 8.399 9.209 10.472 3.265

MAE 3.623 8.184 7.330 6.576 6.890 8.310 2.355

MAPE 13.35 % 33.63 % 28.74 % 25.66 % 28.21 % 34.34 % 10.19 %

Average

R 0.966 0.908 0.897 0.924 0.908 0.912 0.992

RMSE 3.719 5.914 6.319 5.423 5.856 5.805 1.810

MAE 2.726 4.909 4.857 4.396 4.447 4.797 1.409

MAPE 7.93 % 14.11 % 13.40 % 12.64 % 13.71 % 13.90 % 4.06 %

*P - values of all AI models: P < 0.001.
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lowest estimation accuracy was obtained by the CART model. 
This success of the RF model shows that the ensemble learning 
method is more successful than a single decision tree.
Relationship between the observed and predicted concrete 
compressive strength values of the ANFIS model is illustrated 
in Figure 4.
Due to high prediction accuracy of the ANFIS model, high R2 
values were obtained for all datasets (R2 range from 0.9938-
0.9631). R2 shows the degree of linear correlation between the 
observed and predicted fc value. It can be stated that the closer 
this value is to 1, the model’s prediction ability is the higher. 

On the graphics given in Figure 4, points distributions are close 
to the line, which indicates that there is a strong correlation 
between the observed and predicted values of fc.
Taylor graphics [61] obtained for each dataset are presented in 
Figure 5. Prediction performances of all AI models are compared 
in these graphs.
In the Taylor diagram, correlation coefficients, standard deviation, 
and RMSE metrics, are used to determine comparability between 
AI models. As shown in Figure 5, ANFIS is the superb prediction 
model in which the data closest to the observed values with low 
RMSE and high correlation coefficient are obtained.

Figure 4. Relationship between observed fc and predicted fc values of ANFIS model for test dataset
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4. Conclusions

The predictability of concrete compressive strength is very 
low due to the use of many different materials in concrete 
production, and the complexity of concrete structure. The 
importance of the high prediction accuracy of fc is well 
recognized in the ready mixed concrete industry due to 
the complex structure of concrete. Thus, researchers have 
proposed many models for improving the prediction accuracy 

of fc [20, 22, 57-59, 62, 63]. In this 
study, different AI model prediction 
performances were compared for six 
different datasets in order to determine 
a general successful method in concrete 
compressive strength prediction 
independent of the datasets. R, RMSE, 
MAE and MAPE metrics were used for 
model performance comparisons. The 
relationship between input variables in 
the datasets and concrete compressive 
strength was also examined.
As a result of the study, the following 
results were obtained:
Correlation coefficients are directly 
affected by variation intervals of 
input variables. Therefore, in order to 
determine actual levels effects input 
variables have on output variables, 
variation intervals of input variables 
should be selected carefully. Especially, 
the contribution (effect) of component 
materials to fc in high strength and 
mineral added concretes may not 
be accurately determined due to the 
variation interval of the ages input 
variable. Classification of dominant 
input variables (ages, etc.) in the 
experimental designs will be useful to 
determine actual output functions.
High prediction accuracy is obtained by 
using artificial intelligence methods for 
different concrete types.
The highest prediction accuracy was 
obtained with the ANFIS method 
according to all evaluation metrics 
for all datasets (average R = 0.992, 
RMSE = 1.81, MAE = 1.409, MAPE = 4.06%, 
P<0.001). 
RF model results are close to the ANFIS 
and the lowest estimation accuracy 
was obtained by the CART model. This 
success of the RF model shows that 
the ensemble learning method is more 
successful than a single decision tree.

The correlation coefficients and prediction accuracy cannot 
be generalized for the effect levels of the input variables 
on the output variable, and they vary completely according 
to the selected input variables and the variation intervals. 
The prediction performance of machine learning methods 
depends on many situations. The performance of the 
model can be affected by many factors such as data 
pre-processing, model hyperparameters, and splitting 
strategies of the dataset. The significance of the method 

Figure 5. Taylor diagram of the AI models



Građevinar 6/2021

630 GRAĐEVINAR 73 (2021) 6, 617-632

Mehmet Timur Cihan

(p<0.0001) and evaluation metrics are not sufficient to 
physically indicate that the model is significant. Therefore, 
the developed models are valid only for the selected input 
variables and the variation interval of the input variables as 
well as data used for training/testing.
In the context of total quality control, the usability of artificial 
intelligence learning methods should be improved in the ready-
mixed concrete industry, since high prediction accuracy will 
contribute to the reduction of losses that may occur in the 
production of ready mixed concrete.

In practice, concrete component material properties change 
depending on seasonal parameters and material sources. 
Therefore, the prediction accuracy of concrete compressive 
strength should be determined in future research by using 
datasets not only produced under laboratory conditions but also 
including the variations in the component material properties. In 
addition, it is necessary to make a classification by taking into 
account the functional (workable) regions of the simultaneously 
controllable effect variables, and the prediction accuracy of the 
models should be determined separately for each region.
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