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Steel plate elements loaded in their plane – buckling factors and critical 
stresses 

The stability of steel plate elements subjected to loading in their own plane is analyzed 
in the paper. The notion of elastic critical plate buckling stress is explained, and the 
related buckling factor is defined. The analysis of buckling factor and critical plate 
element stress for arbitrary boundary conditions, arbitrary stress distribution, and any 
plate length to width ratio, is presented by means of an analytic procedure and using 
a specialized computer program EBPlat, which is based on the European standard 
EN 1993-1-5.

Key words:
plate girders, critical stress, buckling factor, plate element stability, computer program EBPlate

Pregledni rad
Mehmed Čaušević, Mladen Bulić

Čelični plošni elementi opterećeni u svojoj ravnini: faktori izbočivanja i 
kritična naprezanja 

U radu je analizirana stabilnost čeličnih plošnih elemenata opterećenih u svojoj ravnini. 
Detaljno je objašnjen pojam elastičnog kritičnog naprezanja izbočivanja ploče te s njim 
u vezi i faktor izbočivanja. Prikazan je izračun faktora izbočivanja i kritičnog naprezanja 
plošnog elementa za proizvoljne rubne uvjete, proizvoljnu raspodjelu naprezanja i bilo 
koji odnos dužine i širine ploče analitičkim postupkom te primjenom specijaliziranog 
računalnog programa EBPlat, koji je utemeljen na europskoj normi EN 1993-1-5. 
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willkürlichen Randbedingungen, willkürlichen Beanspruchungsverteilung und einem 
beliebigen Verhältnis der Blechbreite und - länge durch Anwendung des analytischen 
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1. Introduction

Structural steel elements, rolled or welded, can be taken as if 
they were made of plate elements, which can be either internal 
or external, cf. Figure 1.  As plate elements of class 4 cross 
sections are relatively thin, with pronounced local slenderness, 
they can locally buckle when subjected to compression in their 
own plane (as a consequence of longitudinal compressive force 
acting on the entire cross section and/or as a consequence 
of bending), which is why their reduced cross sectional value 
is adopted in the analysis, cf. Table 1 [1, 2]. Local buckling of 
a plate element, regardless of its position within the cross 
section, limits resistance to longitudinal force of the entire 
cross section, or of the entire element, or its resistance to 
bending, and prevents achievement of cross sectional flow.  
Premature failure due to local buckling effect can be avoided 
by limiting width to thickness ratio of a cross-sectional plate 
element, and by transverse and longitudinal bracing. This 
problem is controlled by introduction of the buckling factor  
kσ , cf. Table 1.
 

Figure 1. Plate elements (rolled or welded) of the girder

The way in which values of the buckling factor, kσ  from Table 1 
are generated, will be shown in the following text.  An example 
will be presented with boundary conditions for 4,0kσ == 4,0 from 
Table 1, and this first analytically, and then using the special 
software package EBPlate (Elastic Buckling of Plate) [3].

Table 1.  Values of buckling factor kσ  for internal element in 
compression [1] 

Stress distribution 
(compression is positive)

Efective width beff

ψ = 1:
beff=ρb�
be1= 0,5 beff      be2=0,5 beff

1 > ψ ≥  0:
beff = ρb�
be1=  = beff          be2=beff-be1

ψ < 0:
beff = ρbc = ρb� /(1-ψ)
be1= 0,4 beff           be2=0,4 beff

ψ = σ2/ σ1 1 1 > ψ >0 0 1 > ψ >-1 -1 -1 > ψ >-3

Factor kσ 4,0 8,2/(1,05)+ ψ 7,81 7,81-6,29ψ+9,78ψ2 23,9 5,98(1-ψ)2

Therefore, to understand the way in which the class 4 cross 
section is defined, i.e. the way in which the area of the class 4 
cross section is reduced (determination of the buckling factor 
kσ ), it is significant to know the theory of stability of plate 
elements loaded in their plane, and this in the way this theory 
is presented in structural mechanics.  This theory can also be 
applied in the following cases:
 - lateral torsional buckling of elements (EN 1993-1-1) [4],
 - stability of compressed steel members composed of plate 

elements (webs and flanges) (EN 1993-1-1) [5, 6],
 - analysis of stability of deep plate girders used on bridges 

(EN 1993-1-5) [2, 7], Figure 2,
 - analysis of stability of plate girders with bracing  

(EN 1993-1-5) [2].

Figure 2. Deep plate girder segments loaded in their plane

2. General theory of stability of plate girders

2.1. Bending stress

The web shown in Figure 3 is considered. According to the 
general bending theory for thin plates, a differentially small 
part of this web (shown in Figures 4 and 5) is used to generate 
the differential equation for deflection of plate elements [6, 8], 
using equilibrium conditions in the straight line perpendicular 
to the studied plane:

4 4 4

4 2 2 42 0w w wq dx dz D dx dz
x x z z

 ∂ ∂ ∂
⋅ ⋅ − + + ⋅ = ∂ ∂ ∂ ∂  

(1)

0q dx dz D w dx dz⋅ ⋅ − ⋅ ∆∆ ⋅ ⋅ =
 

( ) 0,qY D w dx dz− ⋅ ∆∆ ⋅ ⋅ =

where:
w - displacement perpendicular to the plane dx • dz
Y(q) - load perpendicular to the plane dx • dz, Y(q)= q • dx • dz
D - flexural stiffness of a plate element

3

2
 ,

12 (1 )
E hD

ν
=

−

where:
ν - Poisson ratio,
h  - plate element thickness,
E - elastic modulus.
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Figure 3. Studied part of a thin steel element

Figure 4. Differentially small part of the web

2.2. Plane stress

In this case, the differentially small element is affected solely 
by forces situated in the central plane of the element (Figure 
5), and these are [6, 8]: 

 ,   ,   x z xz zxN N T T T= =

In the central plane of the plate (Figure 5), the transverse 
forces are obtained through integration of stress along the 
height of the cross section.  If it is assumed that 1dx dz= = , 

the values of these forces are:
/2

/2

h

x x x
h

N dy hσ σ
−

= ⋅ = ⋅∫
 

/2

/2

h

z z z
h

N dy hσ σ
−

= ⋅ = ⋅∫
/2 /2

/2 /2

h h

xz zx xz zx xz
h h

T T T dy dy hτ τ τ
− −

= = = ⋅ = ⋅ = ⋅∫ ∫

Figure 5. Central plane of the plate

The influence of longitudinal forces is shown in Figure 6. As 
the value  θx is small, it can be assumed that:

sin z z z
wtg
z

θ θ θ ∂
≅ ≅ =

∂
  

sin x x x
wtg
x

θ θ θ ∂
≅ ≅ =

∂

Figure 6. Influence of longitudinal forces

GRAĐEVINAR 64 (2012) 2, 115-125



Građevinar 2/2012

118

Then the sum of longitudinal forces projected on the y axis is:

( )

2

2
x

x xN
Nw w wY N dz N dx dz dx

x x x x
 ∂∂ ∂ ∂ = − ⋅ + + ⋅ + −  ∂ ∂ ∂ ∂   

∑

2

2 ,z
z z

Nw w wN dx N dz dx dz
z z z z

 ∂∂ ∂ ∂ − ⋅ + + ⋅ +  ∂ ∂ ∂ ∂   

After arrangement and neglect of small values of higher order, 
we obtain:

( )

2 2

2 2 z.x z
x zN

N Nw w w wY N N dx d
x x z z x z

 ∂ ∂∂ ∂ ∂ ∂
= ⋅ + ⋅ + + ⋅ ∂ ∂ ∂ ∂ ∂ ∂ 

∑  (2)

The influence of transverse forces is shown in Figure 7 which 
can be used to form the following relation:

( )

2

T
w T w wY T dx T dz dx dz
x z x x z

 ∂ ∂ ∂ ∂ = − ⋅ + + ⋅ + −  ∂ ∂ ∂ ∂ ⋅ ∂   
∑

2

.w T w wT dz T dx dz dx
z x z x z

 ∂ ∂ ∂ ∂ − ⋅ + + ⋅ +  ∂ ∂ ∂ ∂ ⋅ ∂   

Once influences of small values of higher order are neglected, 
the following can be obtained from the preceding equation:

( )

2

2 .T
T w T w wY T dx dz
x z z x x z

 ∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ ∂ 

∑
 (3)

Figure 7. Influence of transverse forces

2.3.  Summation of bending stress and plane stress

We can now formulate the equilibrium condition for all forces 
acting on a differentially small element (bending stress plus 
plane stress) in the straight line of the y axis, the sum of 
equations (1), (2) and (3):

( ) ( ) ( )q N TY Y Y Y= + + =∑ ∑ ∑ ∑
2 2

2 2
x z

x z
N Nw w w wq dx dz D w dx dz N N dxdz
x x z z x z

 ∂ ∂∂ ∂ ∂ ∂
= ⋅ ⋅ − ⋅ ∆∆ ⋅ ⋅ + ⋅ + ⋅ + + + ∂ ∂ ∂ ∂ ∂ ∂ 

2

2 0.T w T w wT dxdz
x z z x x z

 ∂ ∂ ∂ ∂ ∂
+ ⋅ + ⋅ + = ∂ ∂ ∂ ∂ ∂ ∂ 

If this equilibrium condition is multiplied with 1/dxdz, we 
obtain:

2 2 2

2 2 2 0.x z
x z

N Nw w w T w T wq D w N N T
x z x z x z x z x z

∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂   − ⋅ ∆∆ + + + + + + + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

Members of the preceding equation 

   i   x zN NT w T w
x z x z x z

∂ ∂∂ ∂ ∂ ∂   + +   ∂ ∂ ∂ ∂ ∂ ∂   

are small values of higher order that have been neglected.  The 
transverse load q acting on the web (non existent in this case) 
is also omitted.  At that, it is also important to note the change 
of sign of longitudinal forces in case when these forces are 
compressive.  In the end, the following plate buckling equation 
is obtained:

2 2 2

2 22 0.x z
w w wD w N T N
x x z z

 ∂ ∂ ∂
− ∇ + + + = ∂ ∂ ∂ ∂ 

 (4)

Boundary conditions for two basic cases of plate support are:

 - pinned support 0w = and 0w ′′ =
 - fixed plate support 0w = and 0w ′′ =

The simplest case of buckling of a pinned rectangular plate will 
now be considered.  This plate may be an I-section web, which 
is affected by a uniform uniaxial compressive load, as shown 
in Figure 8.

Figure 8.  Pinned rectangular plate (e.g., I-section web) subjected to a 
uniformly distributed uniaxial compressive load

As xN hσ= ⋅ , 0zN =  and 0T =  in case of a compressive longitudinal 
force (Figure 8), the equation (4) is reduced to:

2

2 0.wD w h
x

σ ∂
∇ + ⋅ =

∂
 (5)

This equation can be solved in form of a double trigonometric 
order:

1 1
sin sinmn

m n

m z n xw c
a b
π π∞ ∞

= =

= ⋅ ⋅∑∑

whose derivations are:

Mehmed Čaušević, Mladen Bulić
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22

2
1 1

sin sinmn
m n

w m m z n xc
z a a b

π π π∞ ∞

= =

∂  = − ⋅ ⋅ ⋅ ∂  
∑∑

 (6)22 2

1 1
sin sinmn

m n

m n m z n xw c
a b a b
π π π π∞ ∞

= =

    ∇ = + ⋅ ⋅    
     

∑ ∑

By inserting (6) into (5) we obtain:
22 2 2

2
1 0mn

m n h mc
a b D a

σ
π

  ⋅      + − ⋅ =       
         

The equation of stability will be created for 0mnc ≠ :
22 2 2

2
1 0.cr hm n m

a b D a
σ

π

  ⋅     + − ⋅ =      
       

from which we obtain:
22 2

2 .cr
D b n am

b h a m b
πσ

 
= ⋅ + ⋅ 

 

If we introduce the marks

a
b

α =

    
i
   

2

2 ,E
D

b h
πσ =

Then the critical stress crσ  is expressed via the Euler’s stress  
Eσ :

22

.cr E
m n

m
σ σ α

α
 

= + 
 

If the expression by which we multiply Eσ  is marked with mnk ,
the critical stress is:

cr mn Ekσ σ= ⋅
 

(7)
22

.mn
m nk

m
α

α
 

= + 
 

The minimum critical stress is obtained from minimum value 
of mnk  while assuming that n = 1:

1 0mk
m

∂
=

∂

1
2

1 1 12 0,mk m
m m m

α α
α α

∂   = + − =  ∂   

from where:

2
1 1 0

m
α

α
 − = 
 

and so we have:
2,mα = =

2

1
1 4.m

mk
m

α
α

 = + = 
 

Which means that in this case (n = 1):

4 .cr mn E E Ek kσσ σ σ σ= = =  (8)

The km1 and α dependence can be presented for individual 
values of m using appropriate curves, as shown in Figure 9:

Figure 9. Diagram of curves showing dependence between km1 and α

Obviously, the smallest critical stress will be obtained when 
the α coefficient is a whole number. Thus, for instance, the 
buckling shape consisting of two half-waves (Figure 10) is 
obtained for the plate with the α=a/b=2 ratio, and with a 
uniform uniaxial compressive load.

Figure 10. Buckling pattern

3.  Plate elements in compression according to 
EN 1993-1-1 and EN 1993-1-5

It can be seen from the general theory of stability of plate 
girders (subsection 1.2) that the elastic critical buckling stress 
of plates is calculated using the following expression:

22

2 ,
12 (1 )cr E
k E t k

b
σ

σ
π

σ σ
ν

⋅ ⋅  = ⋅ = ⋅ ⋅ −    
(9)

where:

kσ -  plate buckling factor (coefficient), which takes into 
account the pinning conditions, distribution of stress 
over cross section (which is why the symbol   is used), 
and plate length to width ratio, Figures 8 and 9a;

t -  thickness of steel plate elements (note: the general 
symbol h has been used before the preceding expression, 
as this symbol is normally used in structural mechanics; 
however, the thickness of steel plate elements will from 
this point on be denoted by the symbol t, as introduced 
in Eurocodes for steel structures [2, 4]);
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σE -  Ideal buckling stress of the strip characterized by 
thickness t, width b and length L;

ν - Poisson ratio;
E - Elastic modulus.

Open cross sections are made of several plate elements 
that are free at one longitudinal edge, and are normally very 
long with respect to their width, cf. Figure 11.b. The buckling 
pattern of such external elements is shown in Figure 11.c.  
The dependence between the length to width ratio L/b and 
the buckling factor kσ  for a long thin external element free at 
one edge, is shown in Figure 11.d, from which it can be seen 
that the buckling factor kσ  tends toward the limiting value 
of 0.425 with an increase in the L/b ratio. The buckling factor  
kσ  is dependent on boundary conditions and plate dimension 

ratios. Buckling factor ( kσ ) for several most frequent forms 
of stress exerted at plate element edges are presented 
in Table 2 [1], and this for great L/b ratios of internal and 
external elements. The first step in determining the buckling 
factor kσ is the analysis of boundary conditions of elements, 
when we have to determine whether we are dealing with an 
internal or external element in compression. In the second step, 
the distribution of stress along the element’s cross section is 
taken into account, and this through stress ratio at boundary 
fibres 2 1/ψ σ σ= . Most common cases are those involving 
element in compression with a uniform stress distribution (

2 1σ σ= ) when 1ψ ==1, and when the element is subjected to 
pure bending with the stress at boundary fibres of equal but 
opposite signs 2 1σ σ= − , when 1ψ = −=1.
It has been shown that the buckling factor value 4,0kσ == 4,0, was 

σ1,2 = maximum compressive stress

ψ = σ2/1 +1 1 > ψ > 0 0 0 > ψ > 1 -1

Internal element (I) kσ= 4,0 kσ= 8,2/(1,05+ψ) kσ= 7,81 kσ= 7,81+6,29ψ+9,78ψ2 kσ= 23,9

External element (II) kσ= 0,43* kσ= 0,57 - 0,21 + 0,07ψ2 kσ= 0,57 kσ= 0,57-0,21ψ+0,07ψ2 kσ= 0,85

External element (III) kσ= 0,43* kσ= 0,578/(ψ+0,34) kσ= 1,70 kσ= 1,7-5ψ+17,1ψ2 kσ= 23,8

Figure 11. Behaviour of plate girders in compression [1]

Table 2. Values of buckling factor  kσ    for several patterns of stress distribution at plate element edges [1]

*also approximately obtained in Figure 11.d.

Mehmed Čaušević, Mladen Bulić
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first obtained analytically for boundary conditions and load as 
shown in Figure 8, while the same value for an internal cross 
sectional element and 1ψ = −= 2 1/σ σ =1 is given in Table 2, and 
presented in Figure 12.
A diagram taken from literature [9] is shown in Figure 12.  
This diagram can be used to determine approximate values 
of buckling factor kσ  for various boundary conditions and 
various plate length-to-width ratios. The diagram refers 
to the case .const=σ = const. only, It is applicable to plate girders 
without plate strengthening, and has been obtained using the 
previously presented thin plate theory.

Figure 12.  Values of buckling factor kσ  for plate girder in compression, 
pinned from all sides   

4.  Analysis of plate girders loaded in their plane 
using a specialized software package EBPlate 
Version 2.01

An analytical procedure for obtaining the buckling factor and 
critical stress is presented in Section 2 in order to show how 
complex it is to solve even this relatively simple example. 
Other analytical methods can also be used for determining 
critical stress. One of them is the Rayleigh-Ritz energy 
method, where buckling patterns are also obtained using 

Fourier series. This energy method is used in the EBPlate 
program [3] to calculate minimum values of critical stress  crϕ .  
The EBPlate program uses special program modules, such as 
the LAPACK (Linear Algebra PACKage), to solve eigenfunction 
problems [5, 10]. Results obtained through EBPlate program 
were checked by comparing them with results of numerical 
analysis based on the finite element method (FEM), which 
was used to calculate some 330 examples for purposes of this 
comparison.

The European Committee for Standardization (CEN) has 
recognised the significance of standardizing the analysis 
and dimensioning of plate girders under compression, and 
has introduced a special standard EN 1993-1-5 [2] called 
PLATED STRUCTURAL ELEMENTS. To enable proper use of 
this standard, special comments and solved examples have 
been provided [11, 12].  As the application of this standard is 
still relatively complex, a software called EBPlate [3] has been 
developed.  This software is based on the theory of thin plates 
loaded in their plane.  The software defines buckling factors 
and critical stress values as related to elastic buckling of 
plate girders of various boundary conditions, with or without 
strengthening of plates loaded in their plane.

The EBPlate software analyses isotropic or anisotropic plates 
of invariable thickness as shown in Figure 13. Basic input 
parameters for the use of this software, and final outcomes, 
are presented below:

 - boundary conditions of the plate are first defined by 
selecting one of three possible cases: pinned edge 
conditions, fixed-edge conditions, and elastic conditions, 
as defined according to flexural stiffness and torsional 
stiffness values.

 - longitudinal and transverse strengthening options, with 
similar or different properties, are defined (orthotropic 
plates),

 - possibilities of using strengthening with closed cross 
section (e.g., trapezoidal cross section),

 - external stress (σ ) distribution pattern is defined, as well 
as the possibility of inserting stress distribution data from 
an another software,

 - the program calculates the minimum critical factor crϕ  
by which the external stress affecting the plate (σ ) is 
multiplied, so as to obtain the critical stress value crσ , 

 - the program defines all buckling patterns to which critical 
factor values are associated,

 - 3-dimensional presentation of buckling model patterns,
 - printout of results obtained during analysis, etc.

Thus, the following relation can be formed through the use of 
this software:

cr E crkσσ σ ϕ σ= ⋅ = ⋅  (10)

Steel plate elements subjected to load in their own plane – buckling factors and critical loads 
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Figure 13. General presentation of EBPlate software input data

An example of the way in which buckling factor of the steel 
plate element shown in Figure 14 is calculated using the 
specialized software package EBPlate is presented below.  
First, the following data are defined: dimensions of the 
element, steel properties, and support conditions. The plate 
element shown in Figure 14 is freely supported at all four 
sides, without transverse and longitudinal bracing, which 
means that it is identical to the previously given analytical 
example, as shown in Figure 8.  The dimensions are: a = 2900 
mm, b = 1650 mm, t = 10 mm. The element is subjected to the 
compressive stress of σ = 240 N/mm2.

  

Figure 14.  Definition of plate dimensions, boundary conditions and load

A uniformly distributed uniaxial compression load has also 
been applied to this rectangular plate, so that the result of the 
analysis can be compared with the analytic solution given in 
Subsection 1.2. The comparative presentation of results for 
this example, obtained analytically and using the EBPlate 
software, is presented in Figure 15.
The critical stress determined using this software was 
calculated by means of the theory of linear elastic buckling of 
idealized plate girders, so that there are no stress restraints 
that would normally be applicable in case of real elements. 

Figure 15.  Presentation of software analysis results: buckling factors  
kσ   , critical stress factors Φcr and critical stress values; 
comparison with buckling factor obtained by analytical 
procedure

In this example, the buckling factor amounts to  kσ = 4,067 
which is very similar to the value obtained by analytical 
procedure. Here, the critical stress (cf. Figure 15) amounts to:

cr E crkσσ σ ϕ σ= ⋅ = ⋅ =  4,067⋅ 6,97 = 0,1181⋅250 = 28,35 MPa

Figure 16.  Buckling pattern generated by computer program; 
comparison with analytical procedure

A three-dimensional view of plate element subjected to buckling 
was generated by means of the EBPlate software.  As shown in 
figure 16, the buckling pattern is characterized by two waves in 
longitudinal direction (m=2) and one wave in transverse direction 
(n=1), and the result coincides well with the analytical solution 
presented in Figure 10. 
Obviously, examples from practice are not as simple as the 
example given in Figures 14 to 16, which only illustrates the way 
in which the EBPlate software generates buckling factor and 
critical stress values, without solving differential equation (4) for 
a concrete case. The importance of using the EBPlate program 
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is best seen in calculating buckling factor and critical stress for 
complex practical cases, with orthotropic plates, when it is much 
more difficult to analytically define the buckling factor and critical 
stress values. Solutions for such complex cases are presented 
below. In such cases, it is first of all necessary to define the 
plate element geometry, boundary conditions, load and bracing 
position. Then the values of the buckling factor, kσ, and the critical 
stress factor, øcr are defined for the case of local buckling, and also 
for the case of buckling of the entire plate element with bracing. 
The use of EBPlate software will be illustrated by a number of 
typical examples. 

The first example is the plate element that is freely supported 
on all fours sides, with transverse bracing elements at σ/3 (at 
both sides). The dimensions are a = 2900 mm, b = 1650 mm, t = 

10 mm, bs = 135 mm, and ts = 8 mm. The element is subjected to 
compressive stress of σ = 240 N/mm2, cf. Figures 17 i 18.

The second example is the plate element that is freely supported 
on all four sides, with longitudinal bracing spaced at b/2 intervals 
(one-side only). The dimensions are a = 2320 mm, b = 740 mm, t 
= 15 mm, bs = 135 mm, and ts = 8 mm. The element is subjected 
to compressive stress of σ = 230 N/mm2, cf. Figures 19 and 20.

The third example is the plate element that is freely supported on 
all four sides, with longitudinal bracing (trapezoidal cross section 
– one side only). The dimensions are a = 3600 mm, b = 1700 mm, 
t = 12 mm, b1 = 150 mm, hs = 140 mm, b2 = 85 mm, b3 = 630 mm, 
c =120 mm, and ts = 8 mm. The element is subjected to local 
compressive stress of σ = 470 N/mm2, cf. Figures 21. and 22. 

Figure 18.  Buckling factor kσ , critical stress factor ϕcr , and critical stress values, and the local 
buckling pattern

Figure 17.  Definition of plate dimensions, 
boundary conditions and load

Figure 19.  Definition of plate dimensions, 
boundary conditions and load

Figure 20.  Buckling factor kσ , critical stress factor Φcr , and critical stress values, and the local 
buckling pattern

Figure 22.  Buckling factor kσ , critical stress factor Φcr , and critical stress values, and the local 
and global buckling pattern

Figure 21.  Definition of plate dimensions, 
boundary conditions and load
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The fourth example is the plate element that is freely 
supported on all four sides, with transverse bracing at a/2 
(obostrano). Dimenzije su:  a = 2320 mm, b = 740 mm, t = 15 
mm, bs = 135 mm, and ts = 8 mm. The element is subjected to 
shear stress of τ = 245 N/mm2, cf. Figures 23. and 24.

The fifth example is the plate element that is freely supported 
at all four sides, with one longitudinal bracing (one-sided).  The 
dimensions are a = 3300 mm, b = 1800 mm, t = 12 mm, y1 = 510 
mm, bs = 220 mm, and ts = 8 mm. The element is subjected 
to bending with stress at the top edge: σ = 340 N/mm2, cf. 
Figures 25 and 26.

Higher buckling factor values and, consequently, higher 
critical stress values (even exceeding failure limits fy), have 
been obtained in the above cases. This is due to the fact that 
all instances of strengthening of the plate girder (taken as 
a whole) have been taken into account. The purpose of the 
bracing is to increase bearing capacity of the plate with regard 
to buckling action. It is significant to place bracing elements at 
precisely those places where they would be most useful. These 
examples show that longitudinal bracing is most efficient in 
case of compressive stress, while transverse bracing is most 
effective in case of shear stress.  As to bending stress, the 
most efficient bracing is longitudinal bracing placed at about 
d/4 from compression edge.
Plates realized with bracing may show signs of local or 
global instability.  Thus, depending on geometrical and static 

Figure 23.  Definition of plate dimensions, 
boundary conditions and load

Figure 24.  Buckling factor kσ , critical stress factor Φcr , and critical stress values, and the local 
buckling pattern

Figure 26.  Buckling factor kσ , critical stress factor Φcr , and critical stress values, and the local 
buckling pattern

Figure 25.  Definition of plate dimensions, 
boundary conditions and load

features, local plate buckling may occur in zones between 
bracing points (Figure 18), parts of braced plate may buckle 
at longitudinal and transverse bracing points, and global 
buckling of the braced place may also be experienced (Figure 
20). According to critical load definition [5], the lowest critical 
stress value is always taken as the relevant value.

5. Conclusion

It is significant to show genesis of all important features 
arising from the theory of elasticity and theory of plasticity, 
which have been introduced in structural Eurocodes. For 
instance, two different ways to generate the expression for 
critical moment of lateral torsional buckling of members, 
given as a ready made solution in structural Eurocode [4], 
are presented in [1, 13]. In this paper, the general theory of 
thin-walled plate girders is used to show the way in which 
the buckling factor kσ , critical stress factor crϕ  and critical 
stress values, are generated. The buckling factor kσ was 
obtained analytically by applying the plate buckling equation 
to the simplest case of buckling of the pinned rectangular 
plate subjected to uniformly distributed uniaxial compressive 
load. Approximately the same buckling factor ( kσ ) value can 
be taken, for the said boundary and load conditions, from 
diagrams given in literature [9]. The plate element, presenting 
the same boundary conditions and the same load as in the 
above mentioned case, was analysed using a special software 
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package, and the results coincide with analytical solutions.
The advantage of using the EBPlate software lies in the fact 
that this software enables us to obtain the buckling factor 
and critical stress values for arbitrary boundary conditions 
and load, without or with plate girder strengthening. In other 
words, the solution can be obtained not only for cases given 
in Table 1, but also for cases of arbitrary support with bracing, 
and so all possible cases from structural Eurocodes [2] are 
taken into account.
A limited number of examples, obtained by analytical solving 
of differential equations for thin plate buckling, has so far been 
presented in literature.  The issue of buckling has permanently 
been settled through the use of energy methods, and the 
results obtained using the EBPlate software are presented in 
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such a way that we can relatively easily obtain buckling factor 
values, critical stress factor values, critical stress values, and 
the local buckling pattern for any boundary conditions, for 
arbitrary load, and for an arbitrary position of bracing.
This paper also shows that significant notions, as introduced 
in structural Eurocodes for steel structures, can not 
be understood without proper knowledge of structural 
mechanics.
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