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In der Arbeit sind die Resultate numerischer Tests der Einfliisse vertikaler Ringanker auf
das Verhalten von gemauerten Wanden unter statischer und dynamischer Belastung
dargestellt. Es wurden Doppeletagen - Winde mit und ohne Offnungen, mit gutem und
schlechtem Mauerwerk unter verschiedenen Randbedingungen an den Verbindungen des
Mauerfundaments und der Unterlage analysiert. Es wurde der Einfluss von Langsstab-
Profilen vertikaler Ringanker auf das VVerhalten von Wanden bei horizontalen, statischen
Belastungen sowie harmonischen und Erdbebenbeschleunigungen der Unterlage
erforscht. In der Analyse wurde das vorher entwickelte numerische Modell des Autors fiir
die statische und dynamische Berechnung von ebenen Mauerkonstruktionen angewandt.
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1. Introduction

Vertical and horizontal ring beams greatly influence the
behaviour and strength of masonry walls under vertical load
and especially under horizontal load. Their role is particularly
important in cases when masonry structures are subjected to
earthquake action. First of all, ring beams connect and stiffen
the masonry. They contribute significantly to the strength
capacity of masonry structures subjected to compression,
bending and shear, both for loads in the wall plane, and loads
perpendicular to the wall plane. Ring beams reduce the extent
of deformation to masonry. In horizontal activities, ring beams
allow formation of diagonal compression in masonry. Vertical
ring beams dominantly transfer tensile stresses in masonry.
They allow activation of concrete foundations when tension
occurs at the wall - foundation interface. Horizontal ring
beams redistribute vertical load on the masonry, especially in
case of concentrated forces.

Knowledge about the effect of ring beams in masonry structures
is mostly qualitative. Although numerous experimental and
numerical studies of masonry walls under static and dynamic
load have been made (some can be found in [1-20]), studies
that quantitatively evaluate the effects of various parameters
of vertical and horizontal ring beams on strength capacity
and deformability of masonry walls were not available to the
authors of this paper.

Using the numerical model for static and dynamic analysis of
masonry structures previously developed by the authors [21,
22], this paper investigates the effect of several parameters
of vertical ring beams on the behaviour and limit strength of
masonry walls. Analyses were performed separately for static
and dynamic (seismic) loads. Numerical tests were conducted
forasimple wall geometry. Two-storey walls without openings
and with openings were considered, with good and poor
quality of masonry, and with different boundary conditions
at the foundation - base interface. The effect of the profile
of longitudinal bars of vertical ring beams on wall behaviour
was analyzed. Finally, the most important conclusions of the
research were presented.

2. Brief description of numerical model

A detailed description of the numerical model adopted for
static and dynamic analysis of masonry structures can be
found in[21, 22], and will be only briefly described hereinafter.
The model is intended for simulation of practical planar
masonry structures loaded in their plane. The structure can
be built of masonry and/or reinforced concrete, and geometry
of the spatial structure can also contain subsoil. A simulation
of all main nonlinear effects of the behaviour of the masonry,
reinforced concrete, and soil, is possible.

A macro or micro model of masonry can be used. In the macro
model of the masonry, the complex behaviour of the masonry
(masonry units connected by mortar) is modelled by the

equivalent material of representative mechanical properties.
In the micro model of the masonry, the modelling at the level
of masonry units and mortar (joints) is possible, as well as the
simulation of connection of mortar and masonry units using
contact elements. The isotropic model of masonry can be
used, and the use can also be made of the anisotropic model of
masonry with different strengths (compressive, tensile, shear),
elasticity modulus, shear modulus, and limit strain of masonry
in horizontal and vertical directions. The yield and failure of
masonry in compression, tensile and shear stiffness of masonry
with cracks, and shear failure of masonry, was modelled. The
model of fixed orthogonal smeared cracks was used.

The concrete behaviour is simulated with an isotropic material
model. The yielding and crushing of concrete in compression,
the opening and closing of cracks, as well as the tensile and
shear stiffness of cracking concrete, were modelled. The fixed
orthogonal crack model, with crack direction corresponding to
the direction of principal tensile stresses, was also adopted.
The effect of strain rate on mechanical properties of concrete
and steel can be simulated through dynamic analyses.
Nonlinear effects of reinforcement in compression and
tension, with unloading effects, can be simulated.

Material models for masonry or concrete can be applied for
soil, based on appropriate material parameters. The geometric
nonlinearity of the structure (large displacements) can be
simulated.

3. Effects of vertical ring beams on masonry wall
behaviour

3.1. General

The behaviour of masonry walls under load depends inter alia
on their geometry (height, width, height and width ratio, the
number and location of openings, connection with walls facing
the opposite direction, the number and arrangement of ring
beams, etc.). Simple geometry of walls was used to analyze the
effect of vertical ring beams on the behaviour of masonry walls.
Two-storey independent real walls without and with openings
were analyzed. The walls are 6 m high, 3 m wide, and 0.24
m thick (Figure 1). All the walls have the same concrete
foundation, which is supported by a rigid base. At the floor
levels, all the walls were loaded with a constant continuous
vertical load g. The weight of the walls, ring beams, and
foundation, was directly included in the numerical model.
Amacro model of the masonry with isotropic material properties
was used. The cases of the so-called good masonry (masonry
of high strength, elasticity modulus and shear modulus) and
the so-called poor masonry (masonry of low strength, elasticity
modulus and shear modulus) were analyzed.

In the static analysis, the wall was loaded with a constant
continuous vertical load, and with variable horizontal forces at
floor levels. In the dynamic analysis, the horizontal harmonic
base acceleration was first applied for all walls. The excitation
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period corresponded to the first period of free elastic
oscillations of the corresponding wall.

The resonant harmonic base acceleration was adopted
in order to achieve higher levels of nonlinearity. It clearly
illustrates the difference between the results obtained by
the usual linear model and the adopted nonlinear material
model [21, 22]. A dynamic analysis of all the walls was also
performed for the Kobe earthquake.

The geometry of the analyzed masonry walls, with
reinforcement of ring beams and foundations, is shown in
Figure 1.

m 2mi 'mww E- Zm "—‘*U‘
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Reinforcement of vertical tie beams: m:mmmm;
PZ,.. @=10 0Z,..@8=10
PE,.. B=12 l:z @=12
BZ .. @=14 0z, .. @= 1tk
a) Walls without openings b) Walls with openings

Figure 1. Analyzed masonry walls

The walls without openings (FW), and the walls with openings
(OW), have the same horizontal ring beams (longitudinal bars
4(10). The walls FW, and OW, do not have vertical ring beams.
Walls FW, and OW, have vertical ring beams with longitudinal
reinforcing bars 4@10, walls FW, and OW, have vertical ring
beams with longitudinal reinforcing bars 4@12, and walls FW,
and OW, have vertical ring beams with longitudinal reinforcing
bars 4@14. The stirrups of all vertical and horizontal ring beams
are P6/25. The effect of transverse reinforcement of ring
beams on the behaviour of confined masonry walls was not
analyzed. All the walls have the same properties of concrete
and reinforcement. Two cases of foundations supported by a

rigid surface were analyzed: (i) possible lifting and sliding of
foundations, and (i) prevented lifting and sliding of foundations.

1.2. Possible lifting and sliding of foundations

This case corresponds to numerous states of real masonry
walls where possible lifting and sliding of foundations have
not been prevented. Basic material parameters adopted in

numerical analysis are presented in Table 1.

Table 1: Adopted basic material parameters for masonry walls in Item 3.2

f .. =5MPa compressive strength
f..=015MPa tensile strength
E, = 5000 MPa elasticity modulus

G, = 1000 MPa shear modulus

Good
masonry

Masonry

f..=1MPacompressive strength
Poor f..=003 MPa tensile strength
masonry E, = 1000 MPa elasticity modulus

G, =200 MPa shear modulus

3

f.. =25 MPa compressive strength
Concrete of
foundation f(t =25 MPa tensile strength
. E_=30500 MPa elasticity modulus
and ring beams c

G, = 13 260 MPa shear modulus

f.. =25 MPa compressive strength

Contact elements fkt =0,0 MPa tensile strength

under foundation E, = 30 500 MPa elasticity modulus

G, =13 260 MPa shear modulus

f. =500 MPa compressive strength
Reinforcement steel f 500 MPa tensile strength
E 210 000 MPa elasticity modulus

Spatial discretisation of the walls is shown in Figure 2. A relatively
coarse finite element mesh was adopted. At the foundation-soil
interface, thin contact element connection of the foundations
and the subsoil, thin contact elements were used for an adequate
simulation of the lifting and sliding of foundations.

P PR, PR, o, O OO, O,

I
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Figure 2. Finite element discretisation of analyzed masonry walls
3.2.1. Static analysis

Firstly, the initial state of displacement, stresses and internal
forces for the own weight and vertical load q was calculated.
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After that, the walls were additionally loaded with horizontal
forces H, = H,. The load was applied in successive increments
until failure.

In addition to numerous other parameters, the strength
and deformability of the walls loaded with horizontal load
are highly dependent on their vertical load. To illustrate this

Horizontal fores H, = H, [kN]
s 3 EE 8 EREARE

effect, only the walls FW, and OW,, (g = good masonry) with " :::.
different vertical loads at the floor level (g): q, = 0 kN/m (wall e
2 oo DT o 10ma 0o ooeaa oxx

self-weight only), q, = 40 kN/m (wall subjected to medium Horixontal displacernent at the top of the walls [
vertical load), and q, = 80 kN/m (wall subjected to stronger i wall Pz,

vertical load), were initially analyzed. The limit strength
capacity of the walls depends on the loss of their stability
(collapse) as a rigid body. Horizontal wall-top displacement is
shown in Figure 3, while reinforcement stresses at points A
and B are shown in Figure 4.

As expected, the numerical results show that the walls can
withstand small horizontal forces for small vertical loads,
because the load quickly leads to the loss of the stability of - T W
the wall as a rigid body. In case of large vertical loads, walls are Horizonatal diswﬁﬁrﬁfﬂfﬁf:_the top of the walls fml

able to withstand greater horizontal forces. Tensile stresses :

in the longitudinal reinforcement of vertical ring beams are  Figure 3. Horizontal displacement at the top of the walls FW, and OW,

- gow i
-

—_—— T

Herizental force W, = H, [kM]
TEEREES O EE

H

. . g .
small. In the following examples, where the effect of vertical depending on vertical load q - freely supported foundations,
ring beams on the behaviour of the walls is analyzed, all walls static load
are loaded with q = 40 kN/m at the floor level. vertical walls with no vertical ring beams, when compared to

The effect of vertical ring beams on the horizontal wall-top the walls with vertical ring beams. The bar profile of the vertical
displacement, for walls without openings, is shown in Figure ring beam has no practical effect on the limit strength of the
5, while the horizontal wall-top displacement, for walls with  walls. Specifically, as already indicated, the walls do not have a
openings, is shown in Figure 6. It is evident that there is a large vertical load, and their strength capacity is conditioned by
big difference in the strength capacity and deformability of the loss of stability of the wall as a rigid body.
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Figure 4. Reinforcement stress of vertical ring beams at the bottom of the walls FWzg and OWZE, depending on vertical load q - freely supported
foundations, static load
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Figure 6. Horizontal wall top displacement for walls with openings -
freely supported foundations, static load

Deformations of the walls just before failure, with the
corresponding state of the cracks, are shown in Figures 7
and 8. In relation to the walls without openings, the walls
with openings have significantly larger deformations and a
significantly wider crack zones.

) Cracks [good masonary]

Pzw sz F"ZN qu
bl Detormations (good masonary)
Pz, P2 PZ,, PZ.,

Figure 7. Deformations and cracks in walls without openings (good
masonry) before failure — freely supported foundations,
static load
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Figure 8. Deformations and cracks in walls with openings (good
masonry) before failure - freely supported foundations,
static load

The reinforcement stresses of vertical ring beams at the
bottom of the walls for the nonlinear model are showen in
Figure 9. As previously stated, it is evident that they are low
and almost equal for all the profiles of longitudinal bars of
vertical ring beams.
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Figure 9. Reinforcement stresses at the bottom of vertical

ring beams - freely supported foundations static
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3.2.2. Dynamical analysis

The walls analysed in Figure 1 were subjected to constant
continuous vertical load g=40 kN/m. First the eigen problems
were solved for every wall and its corresponding stiffness
[21, 22]. The first and second periods of free oscillation of
walls are shown in Table 2. It is evident that the opening in
the wall softens the wall, and that the walls without ring
beams (FW,, called OW.,) have significantly higher oscillation
periods (lower stiffness) than the corresponding walls with
vertical ring beams. The reinforcement of vertical ring beams
does not greatly contribute to wall stiffness. Also, a large
difference between the first (T,) and second (T,) periods of free
oscillations of the walls is clearly visible, which is inherent to
rigid structures.

In addition to wall analysis by nonlinear model [21, 22],
the analysis with linear-elastic material model was also
performed so as to illustrate differences in numerical results.
A 2 % viscous damping was adopted for all cases.

Table 2. The first (T1) and the second (T2) periods of free oscillation of
walls shown in Figure 1

T,[s] T,[s]
Wall Good Poor Good Poor
masonry masonry masonry masonry

n PZ1 0,1459 0,3239 0,040 0,089
oo
c
i PZ, 0,1046 01771 0,0334 0,063
o
E PZ, 0,1042 01767 0,0333 0,0628
= Pz, 0,1037 01761 0,0332 0,0626

OZ1 0,1655 0,3641 0,0506 01113
)
c
'c OZ2 01217 0,2122 0,0408 0,0763
a
o
£ 0z, 0,1213 02116 0,0407 0,0761
=

0z " 0,1208 0,2109 0,0406 0,0758

Harmonic base acceleration

The walls were subjected to harmonic base acceleration,
as shown in Figure 10. Therefore, the excitation period
corresponded to the first period of free oscillations of the
elastic wall (T,). The maximum base acceleration was 0,2 g,
and the excitation period amounted to 7T.,.

b
0 =0, 2p win L
-
[
. ﬂ_l‘ By -

Figure 10. Horizontal harmonic base acceleration adopted in the analysis
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The effect of vertical ring beams on the horizontal wall-top
displacement for walls without openings is shown in Figure 11,
while horizontal wall-top displacement for walls with openings
is shown in Figure 12. It is obvious that the response of the walls
with the nonlinear numerical model [21, 22] differs completely
from the response with a linear-elastic model. The well-known
resonant motion of the wall is obtained for elastic behaviour and
harmonic base excitation. In nonlinear models, the wall ‘falls out”
from the resonant motion after the onset of nonlinearity (cracks)
in the walls, and after lifting of foundations from the base.

There is also a big difference in maximum displacement of the
walls. In nonlinear model, poor masonry walls without vertical
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Figure 11. Horizontal wall-top displacement for walls without openings
- freely supported foundations, harmonic base acceleration

ring beams are harder to collapse. It is evident that the profile
of longitudinal bars of vertical ring beams has practically no
effect on the response of the wall.

The effect the profile of longitudinal bars of vertical ring
beams has on reinforcement stress at the bottom vertical ring
beams, for nonlinear model, is shown in Figure 13. It is obvious
that, for the corresponding wall geometry and properties of
the masonry, the reinforcement stress of vertical ring beams
is practically independent of the longitudinal bar profile of the
vertical ring beam. Maximum reinforcement stresses are low,
which is mostly the consequence of a relatively small total
weight of the wall, and lifting of foundations from the base
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during dynamic excitation. The state of cracks in the walls
prior to failure is shown in Figures 14 and 15.
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Figure 13. Reinforcement stress at the bottom of vertical ring beams
(point A) - freely supported foundations, harmonic base
acceleration
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Figure 14. The state of cracks in the walls without openings after
base excitation - freely supported foundations, harmonic
base acceleration
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Figure 15. The state of cracks in the walls with openings after base
excitation - freely supported foundations, harmonic base
acceleration

Seismic base acceleration

The dynamic analysis was carried out analogously to that
presented in Section 3.2.2., using the horizontal acceleration
component of the Kobe earthquake (Figure 16) and the non-
linear model only [21, 22]. Earthquake amplitudes were scaled,
so that the maximum amplitude of acceleration is 0.2g (as in
the harmonic base excitation).

Some of the numerical results obtained are shown in
Figures 17-19. If the values given in these Figures are
compared with the corresponding values from Figures 11-
13, it can be concluded that the seismic base acceleration
is here less favorable than the resonant harmonic base
acceleration.

i
—

¥ '.?--1"r'i"‘*r;"'r‘“ﬂ*‘f‘m‘\"**wm"f-\:“::

Figure 16. Kobe earthquake (horizontal acceleration component)
3.3. Prevented lifting and sliding of foundations

This case corresponds to some real masonry walls where
the lifting and sliding of foundations are not possible. In
this analysis, the walls from Figure 1 were re-examined, but
with prevented horizontal and vertical displacement of the
foundation bottom. The vertical load at the floor level was q =
40 kN/m. Only the nonlinear material model was considered
according to [21, 22].
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3.3.1. Static analysis

An analysis analogous to that presented in Item 3.2.1 was
conducted. Some of the results obtained during the analysis
are shown in Figures 20-24. By comparing the computational
values from these Figures with the corresponding values from
Figures 5-9, it can be concluded that the wall with prevented
lifting and sliding of foundations has a significantly higher
limit strength capacity, compared to a similar wall with
enabled lifting and sliding of foundations.

The limit strength capacity depends on the strength capacity
of the reinforced vertical ring beams (good masonry) or
strength capacity of masonry (poor masonry). Here a greater
difference can be noted in the limit strength capacity and
deformability of the walls without vertical ring beams, when
compared to the walls with vertical ring beams. The effect of
profile of longitudinal bars of vertical ring beams on the limit
strength capacity of the walls is also visible. A significant
effect of the quality of masonry on the strength capacity and
deformability of the walls can also be observed.

3.3.2. Dynamic analysis

A dynamic analysis analogous to that presented in Item
3.2.2 was conducted. It should be noted that the walls with
prevented lifting and sliding of foundations also have periods
of elastic system according to Table 2.
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Harmonic base acceleration

Some of the results obtained are shown in Figures 25-29.
If computational values from these Figures are compared
with the corresponding values from Figures 11-15, it
can be concluded that these values are similar. For the
observed harmonic base acceleration, the wall with fixed
foundation behaves similarly to the wall with the lifting
and sliding of foundations. The effect of vertical ring
beams on reinforcement stress at the bottom of the
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Figure 25. Horizontal wall-top displacement for walls top without
openings - fixed foundation, harmonic base acceleration

vertical ring beam for the non-linear model is shown in
Figure 27.

Seismic base acceleration

A dynamical analysis analogous to that presented in Item
3.2.2.bwas conducted. Some of the results obtained are shown
in Fig. 30-32. If comparison is made with the corresponding
values of an equal wall with freely supported foundations (Fig.
17-19), it can be concluded that they are quite similar.
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Figure 30. Horizontal wall-top displacement for walls without
openings - fixed foundation, seismic activity
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Figure 31. Horizontal wall-top displacement for walls with openings
- fixed foundation, seismic activity

4. Conclusion

The behaviour of each masonry wall under static and dynamic
(seismic) load is specific and depends on many parameters.
These are only global conclusions of the research, applicable
to all masonry walls in real-life situations. In addition to
other numerous parameters, the behaviour of masonry walls
significantly depends on their total vertical load. Masonry
walls with a higher total vertical load generally have a higher
limit strength capacity when subjected to a horizontal static
force.

When these conditions are met, the walls with possible
sliding and lifting of foundations generally have significantly
lower limit strength capacity than similar walls with fixed
foundations. In relation to the walls without openings, walls
with openings can have significantly larger displacements
and a significantly lower limit strength capacity, depending
on the size and position of the openings. These differences
increase with the decrease in the quality of masonry. The
effect of ring beams in masonry walls with openings is greater
than in the walls without openings. The walls without vertical
ring beams have a significantly lower limit strength capacity
when compared to similar walls with vertical ring beams.
Walls with stronger reinforcement of vertical ring beams
(bars of larger profile) have a higher limit strength capacity for
horizontal static loads and during seismic activity - especially
in cases when the wall strength capacity does not depend on
the loss of their stability as a rigid body (sliding, overturning).
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The effect of vertical ring beams on the strength capacity and
deformability of masonry walls is higher when the quality of the
masonry is lower. Longitudinal and transverse reinforcement of
vertical ring beams should be designed in practice in accordance
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