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Patch loading - analytical approach to critical load determination

The problem of plate stability under patch-loading can be analyzed using a variety of 
mathematical models by which the problem can be more or less realistically described. 
Models adopted in this paper serve as the basis for checking applicability of the 
analytical solution when subjected to complex load conditions. The accuracy of the 
procedure, proven by comparison with the data obtained through numerical models, 
and achieved by introduction of the exact stress function and use of appropriate 
deflection functions, confirms correctness of the solution presented in the paper.
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Analitički postupak određivanja kritičnog opterećenja - patch loading

Problem stabilnosti ploča pri djelovanju patch-loadinga može se analizirati primjenom 
različitih matematičkih modela koji ga, manje ili više, realno opisuju. Modeli usvojeni 
u ovom radu poslužili su kao osnova za provjeru ponašanja analitičkog rješenja u 
uvjetima djelovanja složenih opterećenja. Preciznost postupka, dokazana usporedbom 
s podacima dobivenim primjenom numeričkih metoda i ostvarena prije svega jer su 
uvedene točne funkcije naprezanja; te primijenjene odgovarajuće funkcije progiba, 
potvrdila je točnost izvedenog rješenja.
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Analytisches Verfahren zur Bestimmung kritischer Belastungen – patch-
loading

IDas Stabilitätsproblem von Platten unter Belastungen in der Form von patch-loading 
kann durch die Anwendung verschiedener mathematischer Modelle analysiert werden, 
die das Problem mehr oder weniger wahrheitsgetreu darstellen. Die in der vorliegenden 
Arbeit angenommenen Modelle sind als Grundlage für die Untersuchung des Verhaltens 
der analytischen Lösung in Bezug auf kombinierte Belastungen eingesetzt worden. 
Die Genauigkeit des angewandten Verfahrens, die hauptsächlich durch die Einführung 
exakter Spannungsfunktionen und entsprechender Deformationsfunktionen erzielt 
werden konnte, ist durch den Vergleich mit auf numerischen Methoden beruhenden 
Resultaten erwiesen worden und bestätigt die Richtigkeit der dargestellten Lösung.

Schlüsselwörter:
elastische Plattenstabilität, exakte Spannungsfunktion, kombinierte Randbedingungen, patch-loading

Patch loading - analytical approach 
to critical load determination 

Primljen / Received: 4.10.2012.

Ispravljen / Corrected: 16.1.2013.

Prihvaćen / Accepted: 20.1.2013.

Dostupno online / Available online: 15.2.2013.



Građevinar 1/2013

2 GRAĐEVINAR 65 (2013) 1, 1-10

Olga Mijušković, Branislav Ćorić

1. Introduction

In steel structures, buckling problem of the high 
steel girders under variable external loads is still very 
interesting topic. Presently available literature abounds 
with data regarding this problem, but mostly obtained by 
numerical or experimental methods. Analytical approach 
has been avoided mostly because of unknown stress 
distribution.

In the series of papers based on Mathieu’s method [1] from 
1890, Pavlovic, Baker and Tahan [2] and later Liu [3] and 
Mijuskovic [4] developed very precise approach for exact 
stress function determination for main case of rectangular 
plate under arbitrary external load. Existence of such solutions 
created the basis for the analysis of very complex stability 
problems in real steel structures.

Analytical approach to critical load determination based 
on exact stress functions implementation, is verified for 
relatively simple case of plate under (DEA) compression 
[3-5]. In this paper the next step is introduced through a 
significantly complicated problem of the plate under locally 
distributed stress (patch loading) applied on the upper 
flange of the steel girder. That way, the applicability and 
accuracy of introduced analytical approach can be proven 
on a more demanding and near to real life engineering 
problems.

Figure 1. Model without transverse stiffeners

The case of patch loading can be analyzed by using different 
mathematical models which are describing the mentioned 
problem with different levels of accuracy. Considering models 
with different levels of complexity, it is possible to compare 
the results and analyze contribution of individual parameters 
to the value of the critical load.

In this paper, two basic mathematical models are 
chosen to represent buckling problems of plates under 

locally distributed compression. As shown in Figure 1.2, 
superposition of two fundamental load types (DEA and DEB) 
[1-5] is used to describe two initial models for the case of 
patch loading.
The next step would be raising model to a more complex level 
through introduction of the shear stresses along vertical 
stiffeners with task to equilibrate external loads (the third 
fundamental load SEB).The final goal would be defining and 
analyzing model with effects of shear stress at the flange-
web junction (load SOA) whose distribution depends on the 
rigidity of the flange. Until now, such effect has never been 
discussed. 

Figure 2. Basic models for patch-loading analysis

Comparative analysis of the four models defining stability 
problem of rectangular plates with different boundary 
conditions under patch loading, can point to interesting 
conclusions about the relevance of various parameters and 
their influence on the value of the critical load. 
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2. Basic outline

Analytical approach to stability problems of the plates due to 
the patch-loading begins with determination of exact stress 
functions for selected models. In the previous paper [5] it 
has been already explained that any arbitrary load (normal 
and/or shear) which acts along the edges of the plate, can be 
described by the chosen functions (even and/or odd in relation 
to the coordinate axes), so the total solution is obtained by the 
adequate combination of eight basic cases (Figure 3.). 
For the presented initial models, external load is obtained by 
combining symmetrical (DEA) and anty-symmetrical (DEB) 
basic types (Figure 3.). Since the results for stress functions for 
the DEA case can be found in literature [3-5], only DEB case is 
presented in this paper.
In the Figure 4. the procedure for obtaining the exact stress 
distribution for the model 2 is explained by superposition of 
the adequate DEA and DEB solutions. The possibility to achieve 
exact stress functions for complex cases of plates under patch 
loading guarantees accurate analytical approach to critical load 
determination. So far, in the literature, only in the researches of 
Pavlovic and Liu [3, 6, 7] it is possible to find analytical results 
for buckling loads, but exclusively for simply supported plates. 
Up to now, for this load case and the plates with different 
boundary conditions, there are no precise analytical solutions.
In this paper, two mathematical models are used to prove 
accuracy of presented analytical approach. All the results in this 
paper are reaffirmed by numerical finite-element (ANSYS) runs.

2.1. Mathieu’s solution

Although basic equations can be found in literature [1-5], 
before proceeding with solution it is necessary to summarize 
the main governing expressions of two-dimensional elasticity, 
since Mathieu’s notation and approach (XIX century work) 
depart from current conventions.  In his paper [1], Mathieu 
expressed the known equilibrium equations, without the 
presence of body forces, in terms of displacements:

∂
∂

+
∂

∂
=

σ τx xy

x y
0   ∆u d

dx
= −

1
ε

ν
 (1a)

 Mathieu ⇒
∂

∂
+
∂

∂
=

τ σyx y

x y
0   ∆v d

dy
= −

1
ε

ν  (1b)

where:
D - Laplasov operator
u, v - shifts in x and y direction respectively

ν =
∂
∂

+
∂
∂

u
x

v
y

 - volume dilatation (2)

ε
µ

λ µ
=

+
 -  constant defined using familiar (3)

    Laméovih parameters

With the quite simple mathematical operations system (1) 
can be transformed into the following form:

Δν = 0  (4)

Figure 3. Eight basic load cases

Figure 4. Creation of model 2 by combination of two basic load cases
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Mathieu’s approach to the 2D elasticity problem starts with 
the careful selection of two ordinary Fourier series for ν (4) 
with infinite unknown coefficients, taking into account the 
symmetry or anti-symmetry of the stresses with respect to 
the x and y directions.

ν = ν1 + ν2 (5)

The following step presents the introduction of the function F 
(F1+F2), from the conditions that the equation is fulfilled:

  ∆F2 2
1

= −
ε
ν  (6a)

∆F = − ⇒
1
ε
ν   

  ∆F2 2
1

= −
ε
ν  (6b)

Finally, when displacements u and v are determined

u dF
dx

dx= + ∫α ν1   (7a)

v dF
dy

dy= + ∫α ν 2  (7b)

where:

α
λ µ
µ

=
+( )2  - constant expressed with Laméo parameters

normal stresses N1 and N2 are defined along the axes x and y, 
as well as the in-plane shear stress T3. 

N d F
dx1 1

2

22 2= + +λν µαν µ  (8a)

N d F
dy2 2

2

22 2= + +λν µαν µ  (8b)

T d F
dxdy

d
dy

dx d
dx

dy3

2
1 22= + +









∫∫µ α

ν
α

ν  (8c)

As it is pointed above, Mathieu’s solution for the basic case 
DEA has already been presented [3, 4, 5]. In this paper, special 
attention is paid to the second load case (DEB), with all 
necessary explanations and comments.

2.2.  Exact stress function for the fundamental load 
case (DEB)

Obviously, DEB case is not in self-equilibrium and involves 
rigid-body translation. 
   DEB - boundary conditions:
   N f y x a

1 2
= =( ),  (9a)

   N f y x a
1 2
= − = −( ),

   N y b
2 0

2
= = ±,  (9b)

   T x a y b
3 0

2 2
= = ± = ±, ,   (9c)

   external load:
   f y A A nyn

n
( ) cos= + ∑0  (10)

Introduction of the series
In this case, series odd in x but even in y must be chosen for 
the dilatation functions.

ν
π

1
2

= + =∑Dx B e nx ny n q
bn

n
( ) cos ,   q = 1, 2, 3, ... (11a)

ν β
π

2 = =∑ m
m

E my mx m p
a

( ) sin ,   p = 1, 3, 5, ... (11b)

Therefore, the expressions for F1 and F2 are:

F D x
n
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6
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In the aim of more efficient writing of very long expressions, 
certain abbreviations are introduced (E( ) = cosh( ) and e( ) = 
sinh( )).

Boundary conditions
From the boundary condition of T3 = 0 on x = a/2, the following 
expression for Hn is obtained:

H B
n

a
n
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2 42
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Components containing cos 1
2 ma  can be eliminated with the 

proper selection of the parameter m = pp/a, p = 1, 3, 5, ...(11b).
Similarly, from the boundary condition of T3 = 0 on y = b/2, and 
noticing that (sin )1

2 0nb = for the values n = 2qp/b, q = 1, 2, 3, 
... the expression for Gm follows:
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 (13b)

The second group of the boundary conditions is used to 
produce infinite system for constants Bn and bm.. Therefore, 
considering equations (13), the boundary condition of N1 = f(y)  
onx = a/2 yields:
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Similarly, the fourth condition of N2 = 0 on y = b/2 results in:
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Coefficients Bn, bm and B0, b0

Multiplying by dy and integrating between ±b/2, equation 
(14a) reduces to its first term:

D A
a

=
+
2

2
0

( )λ µ  (15)
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On the other hand, second group of coefficients are obtained by 
multiplying equations (14a) and (14b) by cosnydy and sinmxdx 
respectively and integrating between ±b/2 and ±a/2 respectively:

B A
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At the end, final expression for coefficients bm  and Bn (17) are 
obtained by using recursive iteration. Namely, Mathieu proposed 
the way to solve the system by so-called "reduction" method in 
which infinite sets of infinite series are recursively "looped" into 
one another to solve "exactly" infinite system of equations. 
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In the aim of making the equations simplier, the following 
abbreviations are introduced:

σ χ σ( ) ( ) / ( ), ( ) ( ) / ( )x e x x E x x E x x= − =  (18)

while L and Z functions are in non-dimensional form:
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Stresses
Finally, expressions for the exact stress functions for the plate 
under load case (DEB) are:
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In Table 1, stress distributions for the case of patch loading 
defined by the model 1 are presented. These functions are 
obtained by analytical approach, on the one side, and on the 
other, by ANSYS software based on the finite element method.
For the one selected case (f = 1 and g = 0,1), in order to obtain 
exact stress function, superposition of four different load types 
is performed (figure 5) and stress distributions, calculated by 
MATHEMATICA software, are presented in Table 1. In order to 
control results, several stress values, chosen from analytical 
solution, are used during chart drawing in ANSYS. That way, by 
overlapping two diagrams in the last column, it is possible to 
notice extremely good contour matching.

2.3. Analytical approach to plate buckling

The problem of the elastic stability of rectangular plates with 
different boundary conditions is investigated using the Ritz 
energy technique. The strain energy due to bending of the plate 
is defined in the traditional way. On the other hand, the exact 
stress distribution of Mathieu’s theory of elasticity is introduced 
through the potential energy of the plate associated with the 
work done by external loads. By adopting the exact stresses 
within a plate under patch loading and using the double Fourier 
series to represent any possible buckled profile, the buckling 
loads can be obtained in a very accurate way. Analytical 

Figure 5. Creating of model 1 by superposition of two fundamental load cases DEA and DEB
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approach to plate buckling under patch loading is presented 
in the examples of the rectangular simply supported plates 
(SSSS) as well as in plates with two edges simply supported and 
other two clamped (CSCS). In order to verify the results from 
analytical method, the finite-element method (ANSYS) is used 
to produce buckling coefficients for the considered problem. 
Presently available literature has no records on analytical 
solutions dealing with the subject.

2.3.1. The adopted deflection series

In order to guarantee the accuracy, the double Fourier series 
are used to represent buckled profiles of the two chosen types 
of plates (22-23). These series satisfy all boundary conditions, 
term by term, and, as it has been previously shown [4-5], are 
capable of representing any possible buckled profiles for very 
wide range of aspect ratios and load cases. 

Table 1. Stresses distribution within plate obtained by analytical approach and by software (ANSYS) based on the finite element method

Plate with mixed boundary conditions, with aspect ratio f = a/b = 1.0 and g = 0.1

ANSYS (FME) Analytical solution Control-overlap

σx

ANSYS (FME) Analytical solution Control-overlap

σy

ANSYS (FME) Analytical solution Control-overlap

txy
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Case 1
 edges x = ± a/2 simply supported (S)
 edges y = ± b/2 simply supported (S)

Figure 6. Simply supported plate SSSS
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Case 2
 edges x = ± a/2 clamped (C)  
 edges y = ± b/2 simply supported (S)

Figure 7. Plate with mixed boundary conditions CSCS
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2.3.2. Strain energy due to bending

During the evaluation of the total potential energy of the 
plate, the first step is defining the strain energy due to plate 
bending in the traditional way
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where D is flexural rigidity of the plate.

The part of the potential energy of the plate associated with 
the work done by external loads is presented by the expression 
(25). In this expression, the stresses within the plate N1, N2 
and T3 are given by equations (21) that represent solutions of 
the Mathieu’s exact approach:
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Introducing the exact stress functions makes the expression for 
the work done by external forces more complex. It presents the 
basic difference in relation to the all previous analyses of the 
stability of plates which are not simply supported along all edges. 

2.3.3. Formulation of eigenvalue problem

Finally, after the definition of the strain energy of the plate 
bending U, and of the value which responds to the work done 
by external forces V, the total potential energy of the system 
can be written in form:

P = U + V (26)

From the minimum potential energy principle, the condition 
(27) is given by

∂
∂

=
∂
∂

+
∂
∂

Π
W

U
W

V
Wmn mn mn

 (27)

which basically represents linear system of m·n homogenous 
equations per unknown coefficients Wmn. The existence of 
nontrivial solution, expressed through condition that the 
determinant of the system is equal to zero, leads to the 
solution of the classical eigenvalue problem. In its scope, 
the lowest value has the only practical importance, which 
presents the requested critical load. Surely, the usage of the 
corresponding software (MATHEMATICA) was necessary in 
the solving process because of the complexity of the analytical 
procedure. The complexity directly depends on the adopted 
number of terms of the stress functions, as well as of number 
of terms of the deflection functions.

3. Numerical examples and results

For the case of patch-loading analyzed by model 1, all results 
for buckling load coefficients for two type of plates with 
different boundary conditions (SSSS and CSCS), calculated 
for plate aspect ratios between f = 0.3 – 1 and different load 

Figure 8. Numerical examples
Notation: K – buckling coefficients; t  –  plate thickness; D –  flexural rigidity of the plate D = Et3/12(1-n2)
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distributions g = 0.1 – 1, are presented in Tables 2 and 3. On the 
other hand, critical loads obtained by model 2 are presented in 
the chart form (Figure 9.a and 9.b) to enable easy comparison 
between results of two patch loading models (Figure 8.). 
In these tables for the model 1, there are not only buckling 
coefficients obtained by analytical approach, but also there 
are, as some kind of "experimental" values, the results of finite 
element method (ANSYS).
It is important to point out that when it comes to analytical 
solutions in the form of infinite series, convergence control is 
required. Namely, from the practical reasons it was necessary 
to include some limits regarding number of series terms for 
stress as well as for deflection functions. Because of that 
limitation, every proposed analytical approach to critical load 

determination required thorough convergence control. From 
the stress function point of view, for the load types DEA and 
DEB, accuracy of the solution is achieved with 40 and more 
terms. In the case of the deflection function, sometimes 
it is desirable the presence of more number of terms in 
dependence on boundary conditions and types of the load. 
For initial patch loading models with two different types of 
boundary conditions (SSSS and CSCS) analyzed in this paper, 
deflection functions with 20 terms (22-23) were absolutely 
capable to describe deformed shape for any plate f or load g 
aspect ratio.
Certainly, we are aware of the fact we get the solution little 
bit higher than exact one, by limiting the numbers of terms. 
However, analyzing results from Tables 2 and 3, obtained 

Plate SSSS – patch loading Model 1 Example f = 0.5 and g = 0.3

K2 = Kf2g f = 0.3 f =0.5 f =0.7 f =0.9 f =1.0 Rezultati

g = 0.1

0.6898 1.2149 1.7619 2.4898 2.9630 A. Approach

0.6885 1.2131 1.7591 2.4855 2.9577 MKE (Ansys)

(-0.188) (-0.148) (-0.159) (-0.173) (-0.179) Diff. (%)

g = 0.3

0.8809 1.3555 1.8898 2.6339 3.1226 A. Approach

0.8796 1.3536 1.8867 2.6293 3.1169 MKE (Ansys)

(-0.148) (-0.140) (-0.164) (-0.175) (-0.183) Diff. (%)

g = 0.4

1.0127 1.4589 1.9928 2.7526 3.2539 A. Approach

1.0114 1.4569 1.9896 2.7478 3.2480 MKE (Ansys)

(-0.128) (-0.137) (-0.161) (-0.174) (-0.181) Diff. (%)

g = 0.5

1.1588 1.5793 2.1201 2.9000 3.4159 A. Approach

1.1575 1.5770 2.1165 2.8949 3.4096 MKE (Ansys)

(-0.112) (-0.146) (-0.170) (-0.176) (-0.184) Diff. (%)

g = 0.7

1.4679 1.8706 2.4486 3.2720 3.8155 A. Approach

1.4666 1.8676 2.4443 3.2661 3.8083 MKE (Ansys)

(-0.089) (-0.160) (-0.176) (-0.180) (-0.189) Diff. (%)

g = 0.9

1.7798 2.2447 2.8686 3.7078 4.2574 A. Approach

1.7776 2.2409 2.8634 3.7010 4.2493 MKE (Ansys)

(-0.124) (-0.169) (-0.181) (-0.183) (-0.190) Diff. (%)

g = 1.0

1.9557 2.4614 3.0993 3.9238 4.4621 A. Approach

1.9530 2.4571 3.0938 3.9166 4.4536 MKE (Ansys)

(-0.128) (-0.175) (-0.177) (-0.183) (-0.190) Diff. (%)

Table 2. Buckling coefficients for model 1 in the case of plate SSSS  (f = 0.3 - 1, g = 0.1 – 1)
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Plate CSCS – patch loading Model 1 Example f = 0.5 and g = 0.3

K2 = Kf2g f = 0.3 f =0.5 f =0.7 f =0.9 f =1.0 Rezultati

g = 0.1

1.7748 3.2502 4.3354 5.2013 5.7410 A. Approach

1.7732 3.2485 4.3336 5.1979 5.7464 MKE (Ansys)

(-0.090) (-0.052) (-0.042) (-0.065) (-0.080) Diff. (%)

g = 0.3

2.4361 3.7632 4.6484 5.4524 5.9765 A. Approach

2.4341 3.7623 4.6473 5.4498 5.9726 MKE (Ansys)

(-0.082) (-0.024) (-0.024) (-0.048) (-0.065) Diff. (%)

g = 0.4

2.8113 4.1350 4.8817 5.6488 6.1599 A. Approach

2.8077 4.1343 4.8806 5.6460 6.1562 MKE (Ansys)

(-0.128) (-0.017) (-0.023) (-0.050) (-0.060) Diff. (%)

g = 0.5

3.0464 4.5390 5.1598 5.8878 6.3802 A. Approach

3.0421 4.5384 5.1585 5.8851 6.3764 MKE (Ansys)

(-0.141) (-0.013) (-0.025) (-0.046) (-0.060) Diff. (%)

g = 0.7

3.5057 5.2106 5.8434 6.4732 6.8996 A. Approach

3.4997 5.2075 5.8413 6.4700 6.8955 MKE (Ansys)

(-0.171) (-0.059) (-0.036) (-0.049) (-0.062) Diff. (%)

g = 0.9

3.7704 5.7234 6.6654 7.1349 7.4435 A. Approach

3.7623 5.7164 6.6622 7.1313 7.4389 MKE (Ansys)

(-0.215) (-0.122) (-0.048) (-0.050) (-0.062) Diff. (%)

g = 1.0

3.9003 5.9571 7.0924 7.4649 7.6968 A. Approach

3.8909 5.9483 7.0883 7.4612 7.6920 MKE (Ansys)

(-0.241) (-0.148) (-0.058) (-0.050) (-0.062) Diff. (%)

Table 3. Buckling coefficients for model 1 in the case of plate CSCS (f = 0.3 - 1, g = 0.1 – 1)

with 20 terms of deflection functions, it is obvious that by 
increasing number of terms we would not improve accuracy 
significantly but on the other hand it would increase the 
complexity of analytical approach.

4. Analysis of the results of calculations

With the detailed analysis of the presented results for model 1 
(Tables 2 and 3), it is very easy to notice very good behavior of 
analytical solution for both types of boundary conditions in the 
complete considered ranges of the plate (f = 0.3 –1) and load 
(g = 0.1 – 1) aspect ratios. Tables 2 and 3, which present values 
of buckling coefficients of two types of plates (SSSS, CSCS) 
under patch loading defined with model 1, refer to the maximal 
discrepancy of 0.25% (CSCS f = 0.3 and g = 1) in relation to the 
results evaluated by the application of the finite element method. 

It is important to point out that for the problems regarding 
stability of the plates, buckling coefficients obtained by 
finite element method are below exact values, as a result of 
limited number of terms in interpolation functions. Knowing 
that, small existing discrepancy between presented results 
confirms accuracy of the analytical approach.
Results obtained with model 2 were subjected to the same 
type of control. Comparison with finite element method 
solutions (ANSYS) confirms high level of concordance for all 
load and plate types (maximal discrepancy for the simply 
supported plate SSSS is 0.3%, for the case of f = 0.1 and g = 1; 
maximal discrepancy for the clamped plate CSCS is 0.95% for 
the same case of f = 0.1 and g = 1). The reason why results 
for model 2 are presented in the chart form instead of table 
form is because of a slight deviation from model 1 and better 
models comparison (Figure 9).
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From the chart, it is obvious that in the case of simply 
supported plate (Figure 9a) maximal discrepancy between 
two models is in the range -0.9% (g = 0.1) and 1.5% (g = 1) for 
aspect ratio f = 0.3. In all other cases regarding plate SSSS 
discrepancy in buckling load for two models are within 1%.
In the case of plate with two clamped edges CSCS, some 
discrepancy was expected, especially for the category of wide 
strips (f= 0.3 and f= 0.5). Figure 9.b point out that results for 
model 2 are slightly below corresponding values calculated for 
the model 1 (up to 6% for f= 0.3 and g = 1). However, for nearly 
square plates, in all load range, discrepancy is within 0.1%. As 

a final conclusion we can point out that two models have very 
similar behavior under patch loading which results in very 
similar, almost identical buckling coefficients. 
Since in this paper the behavior of plates with simply supported 
and clamped edges is investigated, it was considered interesting 
to analyze increase in buckling capacity due to different 
boundary conditions (SSSS and CSCS). For the load case g = 0.3 
(Figure 10.), the difference between values of critical load for 
simply supported and clamped plates is, especially for category 
of wide strips, up to 2.8 times (for plate SSSS with aspect ratio f= 
0.3 coefficient is K2 =0.8809 while for plate CSCS is K2 = 2.4361). 
For the full load range increase is in-between 1.7 and 2.8 times.

5. Conclusion

At the end, the main conclusion can be that obtained exact stress 
functions, as well as adopted deflection functions, for the two initial 
mathematical models, are capable to describe the behavior of the 
plates under patch loading and produce very accurate solutions. 
Now it is possible to go a step further and build new, more 
advanced models, by introducing shear stresses along the shorter 
plate edges and/or shear effects on the flange-web junction. Until 
now, such effect has never been discussed analytically.Figure 10. Buckling load for plates SSSS i CSCS obtained with model 1
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