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Nonlinear analysis of engineering structures by combined finite-discrete 
element method

A numerical model for dynamic analysis of dry-stone masonry and reinforced-concrete 
structures, based on the combined finite-discrete element method (FEM/DEM), is presented 
in the paper. This model describes behaviour of such structures when exposed to dynamic 
load, crack initiation and propagation, energy dissipation mechanisms due to non linear 
effects, inertial effects due to motion, contact impact and achievement of the state of rest 
as a consequence of energy dissipation mechanisms in the system.
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konačno-diskretnih elemenata

U radu je prikazan numerički model za dinamičku analizu suho zidanih kamenih i armirano-
betonskih konstrukcija zasnovan na kombiniranoj metodi konačno-diskretnih elemenata 
(FEM/DEM). Model opisuje ponašanje takvih konstrukcija izloženih dinamičkom opterećenju, 
pojavu i razvoj pukotina, trošenje energije uslijed nelinearnih efekata, inercijalne efekte 
uslijed gibanja, kontaktno međudjelovanje i postizanje stanja mirovanja kao posljedicu 
trošenja energije u sustavu.
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1. Introduction

In modern civil engineering, many engineering structures are 
realized either as reinforced-concrete or masonry structures. 
Despite differences in their behaviour, they also present some 
common features, particularly with regard to crack initiation. 
The nonlinear analysis of reinforced-concrete and masonry 
structures exposed to static and dynamic load has imposed 
itself over the past several decades as a technique that 
enables us to monitor behaviour of such structures all the 
way until failure, with an accuracy that varies depending on 
the model or method used for this purpose. Crack initiation is 
recognised as one of significant causes of nonlinear behaviour 
of reinforced-concrete and masonry structures.
Most models described in literature, by which the behaviour of 
reinforced–concrete and masonry structures is simulated, are 
based on the finite element method.
In reinforced-concrete structures, the cracking of material is 
described using the smeared crack model [1-7] or the discrete 
crack model [8]. In the smeared crack model [1-7], the cracked 
concrete is modelled as an elastic orthotropic material with a 
reduced elastic modulus in the direction perpendicular to the 
crack. In this approach, local discontinuities in the displacement 
zone are distributed over the finite element, while an averaged 
relation between the stress and strain values is described with 
constitutive laws. In the discrete crack model, cracks are modelled 
as a geometrical discontinuity by separating finite elements [8] 
or by introducing basic functions through which the discontinuity 
in the displacement zone can be described [9, 10].
In the masonry structure modelling context, the distinction 
can be made between the micro modelling and macro 
modelling. Macro modelling is the masonry structure 
modelling approach that is now dominantly used in practice 
[11-14]. In this approach, the structure is simulated as an 
orthotropic continuum in which the mean relation between 
the stress and strain is obtained experimentally or through 
homogenization techniques. A drawback of the concrete and 
masonry structure modelling by means of continuum is that 
the occurrence of large discontinuities in the displacement 
range can not be described. One of the ways to overcome 
this drawback is to introduce contact elements into the finite 
element mesh. In this approach, the behaviour of material 
in the finite element is most often linear-elastic, while the 
material nonlinearity is modelled in contact elements. The 
constitutive law of contact element behaviour is based on the 
theory of plasticity [15-18] or damage mechanics [19, 20].
A drawback of models based on the finite element method 
is the impossibility to simulate mechanical interaction 
between several bodies, which is important during analysis of 
structures exposed to impact load, and also during analysis of 
progressive collapse of structures.
Models based on the discrete element method have been developed 
for the analysis of problems involving mechanical interaction 
between several bodies which might have large rotations and 

displacements. This method was initially used for simulating 
sliding and detachment of rock mass along joints defined in 
advance [21], and has later on found a suitable application in the 
analysis of masonry structures [22-24] and reinforced-concrete 
structures [25]. The main feature of the discrete element method 
that has enabled its application in the analysis of structures, 
masonry structures in particular is the presentation of a structure 
as a set of discrete elements connected with each other by contact 
elements. This approach enables us to simulate structural collapse 
due to rotation, sliding, and impact load.
A shortcoming of models based on the discrete element 
method is their impossibility to describe the state of stress 
and strain within discrete elements, which is highly significant 
in the analysis of the initiation and development of cracks.
Many attempts have been made in recent times to make use 
of advantages presented by the finite and discrete element 
method [26-28]. In the scope of this method, the behaviour of 
material until initiation of cracks is modelled as in the finite 
element method, while the discrete crack appears at the 
moment when the tensile strength of material is exceeded. 
The appearance of cracks and fragmentation of discrete 
elements is comprised in contact elements that are modelled 
between finite elements.
An advantage of the combined finite-discrete element 
method lies in the possibility to describe phenomena such 
as the behaviour of the structure due to dynamic action in 
linear-elastic phase, initiation and propagation of cracks, 
inertia effects due to motion, interaction resulting from 
dynamic contact and, finally, achievement of the state of 
rest which occurs as a consequence of energy dissipation 
in the structure. For that reason, this method has imposed 
itself as a very appropriate tool for the development of a new 
numerical model for concrete and reinforcement that enables 
simulation of response of reinforced-concrete structures 
exposed to dynamic load [30, 31]. Studies have also been 
made to demonstrate advantages of using the combined 
finite-discrete element method in the non-linear analysis of 
dry stone masonry structures [32].

2. Combined finite-discrete element method

The combined finite-discrete element method (FEM/DEM) 
[33-35] is based on the simulation of behaviour of a great 
number of discrete elements that can be in an interaction. 
Each discrete element is discretized with its own mesh of finite 
elements and hence its deformability is enabled. The material 
nonlinearity, including the occurrence and development of 
cracks and, finally, fragmentation of discrete elements, is 
enabled through the model of contact elements that are 
implemented between finite elements. In order to take into 
account all these effects, appropriate algorithms have been 
developed in the scope of this method. These algorithms 
cover, in every time interval, the detection and interaction of 
a contact, monitoring of stress and strain in a finite element, 
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initiation and propagation of cracks, integration of equations 
of motion in time which includes large displacements and 
rotations and visualisation of the mentioned effects.
The stress and strain relationship in the finite triangular 
element is taken into account through the Hooke’s law, 
according to the following expression

T E E Dd s=
+

+
−

+
E E

1 1 2υ υ
µ

 

 (1)

where T is the Cauchy distribution tensor, E is the elastic 
modulus, u is the Poisson’s ratio, dE



 is a part of the Green-St. 
Venant strain tensor relating to the change of shape, sE



is a 
part of the strain tensor relating to the change in volume, m is 
the damping ratio, and D is the strain rate tensor [34].

2.1. Contact detection and interaction

The objective of the contact detection algorithm is to find 
pairs of neighbouring discrete elements that are in contact, 
and to eliminate pairs that are too far away and can no 
longer remain in contact. The NBS (no binary search) contact 
detection algorithm has been implemented in the FEM/DEM 
model [33, 34]. The total time needed to detect all contact 
pairs is proportional to the total number of discrete elements.

Figure 1. Contact differential force in the vicinity of points Pm and Pk

Once the discrete element pairs have been detected, the 
contact forces between two discrete elements in contact 
are defined. One of these elements is the contactor, and the 
other is the target (Figure 1). In the interaction algorithm, 
the distributed contact forces are defined by means of the 
penalty method which is based on the principle of potential 
contact forces. When in contact, the contactor and target 
overlap across the surface S which is bounded by the external 
edge Gβm∩βk. Then the total differential contact force at the 
contactor dfk is defined as

d grad grad dSk k mf = ( ) − ( ) ϕ ϕP Pm k
 (2)

where Pm and Pk are the target and contactor overlapping 
points, while j is the corresponding function of the potential. 
The total contact force is obtained by integration (2) over the 
entire overlapping surface S

fk k m
S
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which can also be written as
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β β
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where nG is the unit external normal to the edge G of the 
overlapping surface S.
The Coulomb dry friction model for shear forces is implemented 
in the scope of the contact force algorithm as follows

ft=-kt δt (5)

where ft is the tangential elastic contact force, kt is the penalty 
coefficient for friction, and δt is the tangential vector of 
displacement between two elements [36].
If ft is greater than the maximum friction force defined by the 
Coulomb law, |ft|>µ|fn| then the elements slide one along the 
other while the shear force between them is defined through 
the elastic normal force fn based on

ft=-m fn (6)

where µ is the friction coefficient.

2.2. Crack model

The crack model implemented into the combined finite-
discrete element method is used for simulating the initiation 
and propagation of cracks in brittle materials subjected to 
load modes I and II. The crack initiation in tension is described 
in mode I, while the crack in shear is described in mode II. The 
model is based on approximation of the experimental stress-
strain curve for concrete in direct tension [37].

Figure 2.  Tensile softening shown in relations: a) stress – strain; b) 
stress – displacement

The area under the curve of stress-strain in tension is divided 
into two parts, as shown in Figure 2. In this model, the part 
"A" is implemented into the behaviour of finite elements in 
a standard way through the constitutive law of material 
behaviour [31, 34]. The part "B" presents tensile softening 
where the stress reduces with an increase in strain [31, 37]. 
This is modelled with the discrete crack model, shown in Figure 
3, in which it is assumed for simplicity that the crack is aligned 
with the edge of the finite element. Separation of edges of two 

a)          b)



Građevinar 4/2013

334 GRAĐEVINAR 65 (2013) 4, 331-344

Hrvoje Smoljanović, Nikolina Živaljić, Željana Nikolić

neighbouring finite elements induces stress which is taken as 
the separation function δ, as shown in Figure 2b.
The surface under the stress-strain curve from the moment 
when the stress falls to zero represents the fracture energy 
Gf. This is the work that has to be applied to create a crack of 
a unit area.

Figure 3.  Model of a crack for tensile softening, shown in the stress 
– strain relation

Theoretically, the separation of edges of two neighbouring 
finite elements should be equal to zero all the way until the 
tensile strength of material is attained, which would mean that 
δt=0. In the presented model, the separation of neighbouring 
edges of two finite elements is ensured by topology of finite 
elements in such a way that not a single node belongs to 
two finite elements. The continuity between finite elements 
until the time the tensile strength is ensured by means of the 
penalty method [33]. Springs of great stiffness are modelled 
at the edge of a finite element in the direction of the normal 
(Figure 4a), and so the relation δt=δp is valid. The following 
relation is valid for the separation of δ < δp (Figure 2b)
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where: 

δp thf p= 2 0  (8)

is the separation in the moment when the stress corresponds 
to the tensile strength of material ft, h is the size of the finite 
element, while p0 is the penalty coefficient by which the relative 
error of numerical solution is controlled. In the limit case when

lim
p0 →∞

=δp 0  (9)

the separation of edges of two neighbouring finite elements is 
equal to zero, which corresponds to the moment in which the 
tensile strength of material ft has been achieved. The analysis 

of influence of penalty coefficient on the relative error in 
normal displacements shows that the error is less than 1 % 
for p0=100 E, where E is the modulus of elasticity of material.
The stress between finite element edges falls with an increase 
in separation δ>δp (Figure 2b), and the stress becomes σc=0 at 
the moment of δ=δc. The following relationship between stress 
and displacement has been adopted for the area ofδc>δ>δp.

σ c tzf=  (10)

where z is the function of the experimental curve that 
describes the behaviour of concrete in tension [37] with 
coefficients c1=3.00 and c2=6.93.
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The parameter D in the expression (11) is
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The complete relation showing the relationship δ-σc in the 
mode I can be presented as follows
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Figure 4.  Spring model: a) normal spring – mode I; b) shear spring – 
mode II

Cracks subjected to load in mode II are assumed to behave 
in a way similar to that shown for mode I. Until the moment 
the shear strength of material is achieved, the edges of 
two neighbouring finite elements are supported with shear 
stresses that are calculated by means of the penalty method 
[33]. Edges are supported with shear springs (Figure 4b) as 
shown in the expression below
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where:

t hfp s= 2 / p0  (15)

is the separation in the moment when the stress corresponds 
to the shear strength of material fs, h is the size of the finite 
element, and p0 is the penalty coefficient.
In the limit case when

lim
p0 →∞

=tp 0  (16)

the sliding of edges of two neighbouring finite elements is 
equal to zero, which corresponds to the moment in which the 
shear strength of material fs has been achieved.
The stress between finite element edges falls with an increase 
in sliding t>tp, and the stress becomes tc=0 at the moment of 
t=tc. The following relationship between the stress and sliding 
has been assumed for the area of tc>t>tp

τc szf=  (17)

where D is defined by the relation
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The complete relation describing the relationship τc-t in mode 
II can be presented as follows
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In case the crack is subjected to load in mode I and mode II, 
then the same expressions as previously explained are used 
to calculate normal or shear stresses, but the damage factor 
D is adopted in this case. This factor is defined as

D
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The fracture criterion is defined by

D ≤ 1 (21)

2.3.  Numerical model of reinforcement in the FEM/
DEM model

In the scope of the FEM/DEM method, structures are 
discretized through the mesh of finite and contact elements, 

as shown in Figure 5. Reinforced-concrete structures are 
modelled by modelling the concrete using triangular finite 
elements, while the reinforcement is modelled by two-node 
bar elements [38, 39] embedded in finite elements of concrete.
In the first step, each reinforcing bar is introduced as one bar. 
Once the structure is divided into a certain number of finite 
elements, the search is made to identify reference points or 
intersects of reinforcing bars and ends of finite elements of 
concrete. This is how linear finite elements of reinforcement 
are formed (Figure 5).
Prior to appearance of cracks in concrete, the structure is 
in a linear-elastic range, while triangular finite elements of 
concrete and two-node elements of reinforcement act as 
a single body. The deformation of the triangular element 
influences deformation of the finite reinforcement element. 
This causes stresses in reinforcement which in turn results 
in forces whose influence is taken into account in form of 
equivalent forces in triangular-element nodes. This is how 
the bond between the concrete and steel in the linear-elastic 
range is established.
The appearance of cracks, i.e. the separation of edges of 
neighbouring finite elements, is enabled by describing 
neighbouring edges of triangular finite elements of concrete, 
and end points of neighbouring linear finite elements of 
reinforcement, by means of different nodes.

Figure 5. Discretization of RC structure

The initiation and propagation of cracks in concrete takes place 
in the 2D contact element of concrete placed in between edges of 
triangular finite elements. At the same time, the reinforcement 
within the contact element of concrete is deformed, and its 
nonlinear behaviour is modelled with the linear contact element 
of reinforcement inserted in between neighbouring nodes of 
finite elements of reinforcement. In this model, it is assumed 
in the finite linear element of reinforcement that the relation 
between stress and strain is linearly elastic, and that there is 
no sliding, which means that the deformation of reinforcement 
and concrete in the finite element is the same [30]. 
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Figure 6. Contact element of reinforcement

Nonlinear behaviour of reinforcement is modelled within the 
contact element of reinforcement. The model of reinforcement in 
the contact element [30] is divided into the part before occurrence 
of crack and the part after occurrence of crack. Before occurrence of 
crack, the contact element of reinforcement maintains the continuity 
between linear elements of reinforcement, which means that 
theoretically the separation of d neighbouring points of the contact 
element (Figure 6) should be equal to 0. In actual implementation, 
this has been achieved by means of penalty method [30].
The model of reinforcement behaviour in contact element 
is based on experimental curves that describe the state 
of deformation of reinforcing bar in crack, taking also into 
account plastic deformations due to cyclic load [40]. In the 
contact element of reinforcement, the influence of curvature 
along the reinforcing bar in bending zone was modelled, as 
well as the influence of crack spacing [30]. The improved 
Kato’s material model was adopted for reinforcing steel as it 
enables simulation of cyclic behaviour of steel [41].

Figure 7.  Stress-strain relationship for reinforcing steel: a) 
monotonous load; b) cyclic load [41]

3. Numerical examples

The validation of the developed numerical model based on the 
combined finite-discrete element method is presented in this 
section, using reinforced-concrete beam and stone wall exposed 

to a monotonically increasing load. Literature examples with 
known results of physical experiments are used. In addition, 
the analysis also covers examples showing possibilities for 
using the developed model in the analysis of reinforced-
concrete and dry stone masonry structures subjected to impact 
load, and in the incremental dynamic analysis which was in this 
case conducted by incremental increase of the real earthquake 
amplitude until failure of the structure.

3.1. Bresler-Scordelis reinforced-concrete beam

The Bresler-Scordelis reinforced-concrete beam taken 
from literature [42] was selected in order to validate the 
implemented model for the case of monotonically increasing 
load, and for the adopted nonlinear properties of material. 
Geometrical properties of the analysed reinforced-concrete 
beam are shown in Figure 8.

Figure 8. Geometry of a simple RC beam

Properties of materials used in numerical analysis, taken from 
literature, are presented in Table 1.

Table 1. Properties of materials as input parameters

The beam is exposed to the action of the concentrated 
monotonically increasing force in mid span. The load that causes 
structural failure, i.e. F=258 kN, was obtained by experiment.

Figure 9. Structure discretization

Concrete Steel

Elastic modulus,
 Ec [MPa] 22.753 Elastic modulus, 

Es [MPa] 191. 674

Poisson ratio, ν 0,2 Yield point, fy [MPa] 414,69

Tensile strength, 
ft [MPa] 2.3 Cross-sectional 

area, As1 [cm2] 2,54

Compressive 
strength, 
fc [MPa]

21,79

Failure energy, 
Gf [N/m] 105

a)                          b)
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Concrete is discretized with 2355 triangular finite elements, and 
each reinforcing bar with 168 two-node elements. The load is 
applied all the way until failure. The discretization of structure 
is shown in Figure 9. Results obtained by experiment, and by 
numerical analyses using the 3D FEM method, are presented 
in literature [42]. The nonlinear numerical analysis with three-
dimensional discretization of the structure is conducted in the 
cited literature, and the displacement of point in mid span until 
failure is observed. Results of these analyses, and comparisons 
with results obtained by numerical model based of the FEM/
DEM method, are presented in diagram shown in Figure 10.

Figure 10. Diagram of beam mid-span displacement

The above diagram shows displacement of the point in the mid-
span of the beam as related to a given concentrated force F. The 
biggest deviation of results obtained by the FEM/DEM method 
is 3.8 %. The 0.8 % accuracy was obtained for the limit load which 
amounts to 258.1 kN according to experiment, and 260.2 kN 
according to the FEM/DEM method. Compared to 3D analysis 
with finite elements, the value of displacement immediately 
prior to failure obtained by FEM/DEM method shows a better 
correspondence with experimental results.
The diagram presented in Figure 11 shows dependency between 
the stress in reinforcement and concentrated force F. The element 
below the point of the F force action in the bottom bar of the 
reinforcement was selected. It can be noticed that the liquid limit in 
reinforcement has not been achieved. It is significant to note that 
the full structural failure, both in the experiment and in numerical 
analysis conducted according to the developed model, occurs due 
to yield of concrete in compression. This demonstrates that this 
model describes very well the nonlinear behaviour of reinforced-
concrete structures for the case of failure along the concrete.

Figure 11.  Diagram showing dependence between stress in 
reinforcement and concentrated force F

Cracks for individual force values are shown in Figure 12. 
Cracks are registered once the full yield of concrete has 
occurred (δ=δc).
It can be seen in Figure 12d that the full structural failure has 
been achieved for the force of 260.1 kN.

Figure 12.  Structural cracks for loads: a) F=216.0 kN; b) F=259.0 kN;  
c) F=261.0 kN; d) F=261.1 kN 

3.2.  Dry stone wall exposed to monotonically 
increasing shear load

The validity of the developed numerical model is in this case 
analyzed during description of the stone wall behaviour at 
shear in its own plane. The experiment conducted by Oliveira 
[43] to study shear behaviour of stone walls was selected for 
this purpose. Numerical results obtained using the model 
based on the FEM/DEM method is compared with the results 
of the above mentioned experiment.
The experimental program consisted of a series of quasi-static 
monotonic tests conducted on a small stone wall sample 
whose geometry is shown in Figure 13a. The wall discretization 
was used in numerical analysis presented in Figure 13b.

Figure 13.  Schematic view of a stone wall: a) geometry and load; b) 
discretization of structurecije 

The wall consisted of stone blocks of regular dimensions. Average 
values of mechanical characteristics of granite used in the 
experiment are taken from literature and are presented in Table 2.
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Table 2.  Average values of mechanical properties of stone used in the 
experiment [43]

The shear behaviour of walls was analysed for two vertical 
longitudinal force values (30 kN and 100 kN), which corresponds 
to the pre-compression stress of 0.15 MPa and 0.5 MPa. The 
coefficient of friction between stone blocks was obtained by 
experiment, and it amounted to µ=0.62 .Average values of 
elastic modulus for wall, dependent on pre-compression load, 
and used in the numerical analysis, are presented in Table 3..

Table 3. Average elastic modulus values for wall [43]

Results obtained by experiments and calculations based on 
numerical model developed by Lourenco and Rots [17] are presented 
in the cited literature [43]. This model is based on the finite element 
method containing also contact elements whose constitutive law of 
behaviour is based on the plastic theory. Results of these analyses, 
and comparison with results obtained by numerical model based on 
the FEM/DEM method, are presented in diagram shown in Figure 
14.
A good correspondence can be observed between results obtained 
by model based on the FEM/DEM method, and numerical results 
obtained by Oliveira [43]. The correspondence between numerical 
and experimental results can be considered satisfactory because the 
experiment was conducted with the dry wall made of natural stone. 
In such walls, the influence of irregularities between blocks has a 

considerable effect on wall behaviour, and this effect is very hard to 
model by numerical procedure. The comparison of numerical results 
and results obtained by physical experiment is presented in Figure 
15, for pre-compression stress values of 0.15 MPa and 0.5 MPa.

Figure 15.  Dry stone wall failure modes: a) pre-compression stress of 
0.15 MPa, experimental; b) pre-compression stress 0.15 MPa 
numerical; c) pre-compression stress 0.50 MPa experimental; 
d) pre-compression stress 0.50 MPa numerical

The comparison of numerical results obtained by the FEM/DEM 
model with physical experiments shows that the failure mode 
obtained numerically is similar to that obtained by experiment. 
It can also be seen that the failure of stone blocks does not 
occur in case of low values of pre-compression stress, while 
the full structural failure occurs due to overturning. However, 
the cracking of stone blocks does occurs in case of greater pre-
compression stress values, which imposes the need to take 
into account possibilities of occurrence and development of 
cracks in stone blocks in this kind of analysis. This is why this 
possibility was taken into account in this example (Figure 15d).

Elastic modulus, E [MPa] 15500

Tensile strength, ft [MPa] 3.7

Compressive strength, fc [MPa] 57.0

Failure energy, Gf [N/m] 110

Pre-compression stress Elastic modulus [MPa]

σ =0.15 (MPa) 566

σ=0.50 (MPa) 756

Figure 14. Comparison of numerical and experimental results: a) pre-compression stress: 0.15 MPa; b) pre-compression stress: 0.50 MPa
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3.3. Reinforced-concrete beam exposed to impact load

The possibility of using numerical model based on the 
FEM/DEM method in the analysis of reinforced-concrete 
structures exposed to impact load is presented in this 
example. The simple supported reinforced-concrete beam 
exposed to projectile impact was selected as an example. 
Geometrical properties of the beam and projectile are 
presented in Figure 16. The projectile weighing 37.5 km was 
exposed to initial velocities of v1=60 m/s and v2=80 m/s in 
numerical analysis.

Figure 16. Geometrical properties of reinforced-concrete beam

Material properties of concrete and reinforcement used in the 
beam are presented in Table 5.

Table 5. Material properties as input parameters

Previous analyses conducted during use of this method have shown 
that the value of damping coefficient m adopted in this numerical 
analysis corresponds to the restitution coefficient of 0.18. The 
restitution coefficient value was determined on stone samples. It 
was assumed that the concrete used in this analysis has the same 
restitution coefficient.
The numerical analysis was conducted for three cases: a) unreinforced 
concrete beam, b) beam reinforced with longitudinal reinforcement, 
and c) beam reinforced with longitudinal reinforcement and stirrups. 
The structure discretization for all three cases is shown in Figure 17.

Figure 17.  Discretization of simple supported beam: a) unreinforced 
concrete beam; b) beam reinforced with longitudinal 
reinforcement; c) beam reinforced with longitudinal 
reinforcement and stirrups

Cracks occurring over time are shown in Figure 18 for the 
simple unreinforced concrete beam, for velocities of v=60 m/s 
and v=80 m/s.
Cracks occurring over time are shown in Figure 19 for the 
simple supported concrete beam reinforced with longitudinal 
reinforcement, for velocities of v=60 m/s and v=80 m/s.

Concrete Steel

Elastic modulus, Ec 
[MPa] 29.730 Elastic modulus, Es 

[MPa] 210.000

Poisson ratio, ν 0,2 Yield point, 
fy [MPa] 420

Tensile strength, 
ft [MPa] 3,12 Cross sectional area, 

As1 [cm2] 1,02

Compressive 
strength, fc [MPa] 40,0 Cross sectional area, 

As2 [cm2] 4,52

Damping m 2,5∙106 Stirrups [cm] f 8/15

Figure 18.  Simple supported unreinforced concrete beam: a) v=60 m/s; t=1.0 ms; b) v=80 m/s; t=1.0 ms; c) v=60 m/s; t=5.5 ms; d) v= 80 m/s; t=5.5 
ms; e) v=60 m/s; t=8.0 ms; f) v=80 m/s; t=8.0 ms.
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Figure 19.  Simple supported beam reinforced with longitudinal reinforcement: a) v=60 m/s; t=1.0 ms; b) v=80 m/s; t=1.0 ms; c) v=60 m/s; t=5.5 
ms; d) v= 80 m/s; t=5.5 ms; e) v=60 m/s; t=8.0 ms; f) v=80 m/s; t=8.0 ms

Figure 20.  Simple supported beam reinforced with longitudinal reinforcement and forks: a) v=60 m/s; t=1.0 ms; b) v=80 m/s; t=1.0 ms; c) v=60 
m/s; t=5.5 ms; d) v= 80 m/s; t=5.5 ms; e) v=60 m/s; t=8.0 ms; f) v=80 m/s; t=8.0 ms

Figure 21. Kinetic energy dissipation: a) v= 60m/s; b) v=80 m/s
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Cracks occurring over time are shown in Figure 20 for the simple 
supported beam reinforced with longitudinal reinforcement 
and stirrups, for velocities of v=60 m/s and v=80 m/s.
The total kinetic energy of the projectile and beam as a function of 
time is shown in Figure 21. If potential beam energy is neglected, 
which is possible as there are no oscillations prior to and after 
impact, then the difference between the initial and kinetic energy 
represents the energy dissipation during the impact.
It can be seen in Figure 18 that the projectile fully penetrates 
through the beam in case of an unreinforced beam. If the beam 
is reinforced with longitudinal reinforcement only, the beam 
splits above the bottom reinforcing bar (Figure 19), while in case 
of beam reinforced with longitudinal reinforcement and stirrups 
great damage to concrete and reinforcement is registered, but 
the projectile does not pierce the beam (Figure 20). This can also 
be seen from the kinetic energy diagrams (Figure 21) where the 
maximum energy dissipation occurs in case of beam reinforced 
with longitudinal reinforcement and stirrups.

3.4.  Dry stone masonry bell tower exposed to impact 
and seismic load

The possibility of using the developed numerical model in the 
analysis of dry stone structures exposed to impact and seismic 
incremental load is presented in this example.
The dry stone masonry bell tower structure was selected for the 
analysis. The geometry and discretization of the bell tower structure 
is shown in Figure 22.
The dry stone masonry bell tower consists of stone blocks of regular 
dimensions. Material properties of stone used in numerical analysis 
are shown in Table 6. The damping coefficient value m  adopted in 
this numerical analysis corresponds to the restitution coefficient of 
0.18 as obtained experimentally on stone samples. The coefficient 
of friction amounting to µ=0.60 is used in the numerical analysis. 
The fracture energy adopted for tension is typical for granite, and 
has been taken from literature [44], while the fracture energy for 
shear is assumed to be similar to that used for tension.

Figure 22.  Schematic view of stone bell tower: a) geometry of structure 
and projectile; b) discretization of structure 

Table 6. Material properties of stone used in numerical analysis

The dry stone bell tower exposed to projectile impact at the 
projectile speed of v=50 m/s is presented in this analysis. The 
structure exposed to such load in individual time increments 
is presented in Figure 23.

Figure 23.  Dry stone masonry bell tower exposed to projectile impact: 
a) t=0.1 s; b) t=0.5 s; c) t=1.0 s; d) t=1.6 s; e) t=2.0 s

Here we can see the advantage of this model which can 
simulate impact load and predict the way in which full 
structure failure will be occurred. This failure depends on 
the energy dissipation during the impact, initiation and 
propagation of cracks, and inertia effects of individual parts 
of the structure.
The dry stone masonry bell tower presented in this section 
is analyzed using the method of incremental dynamic 
analysis which has been used in recent times for analyzing 
response of structures exposed to seismic load [45]. It is 
based on incremental increase of load (in this case of the 
real earthquake amplitude), and it enables one to monitor 
behaviour of structures exposed to seismic load over time, 
all the way until failure. This enables analysis of the way in 
which structure failure has occurred, determination of bearing 
capacity of the structure, determination of behaviour factor, 
and monitoring other structure-ductility parameters.

Elastic modulus, E [MPa] 82000

Poisson ratio ν 0.16

Tensile strength, ft [MPa] 12.7

Shear  strength, fs [MPa] 50

Fracture energy for tension, Gft [N/m] 2500

Fracture energy for shear, Gcs [N/m] 2500

Damping m 2.5∙106
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Figure 24. Accelerogram of Petrovac earthquake (1979, Montenegro)

The incremental dynamic analysis of dry stone bell tower 
was spend by exposing the structure to horizontal ground 
acceleration (Figure 24) which was registered on 15 April 
1979 in Dubrovnik in rocky soil during an earthquake whose 
epicentre was in Petrovac (Montenegro). The accelerogram 
was first scaled to peak acceleration ag=0.22 g which is valid 
for Split, and was then gradually increased until the peak 
acceleration which causes full structural failure.
Block displacements for individual peak acceleration values 
are presented in Figure 25.
Figure 26 shows block displacements over time for peak 
acceleration of ag=1.50g at which the full structural failure was 
registered.
Here we can see the advantage of this model which can 
simulate full structural failure caused by big displacements 
and rotation of stone blocks subjected to friction force acting 
in between them.

4. Conclusions

The possibility of using the combined method of finite-discrete 
elements in the nonlinear analysis of engineering structures 
is presented in the paper.
Numerical results obtained by the developed model based 
on the FEM/DEM method are compared in the paper with 
numerical and experimental results available in literature, for 
reinforced-concrete and dry stone masonry structures.
In the analysis of the reinforced-concrete beam exposed to 
monotonically increasing load, numerical results for failure 
load obtained by this model, as compared to numerical results 
of the nonlinear analysis software based on the finite element 
method, present greater accuracy in relation to physical 
experiment.
In the analysis of dry stone wall exposed to monotonically 
increasing load, the results obtained by the model based 
on the FEM/DEM method show a good correspondence 
with numerical results of the nonlinear model based on the 
finite element method. In this case, the correspondence of 
numerical results with experimental results can be considered 
satisfactory because the experiment was conducted with the 
dry wall made of natural stone and, in such walls, the influence 
of irregularities between blocks is significant, and it is very 
hard to model by numerical procedures.
Some possibilities for using the method in the analysis of 
structures exposed to impact load, and in incremental dynamic 
analysis, are also presented in the paper.
The analysis of unreinforced and reinforced concrete beam 
has shown that the initiation and propagation of cracks, and 
the corresponding dissipation of energy, is dependent on the 
reinforcement method applied.
The analysis of the dry stone masonry bell tower exposed 
to impact load has pointed to the advantages of this model 
in simulation of impact load, and in predicting of the way in 
which the full structural failure will be operated. In addition, 

Figure 26.  Stone bell tower exposed to earthquake action for peak 
acceleration of ag=1.50g: a) t=6.30 s; b) t=7.32 s; c) t=11.40 
s; d) t=13.44 s; e) t=18.20 s

Figure 25.  Displacement of bell tower blocks for different peak acceleration 
values: a) ag=0.22g; b) ag=0.80g; c) ag=1.00g; d) ag=1.20g 
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the possibility of using this method in incremental dynamic 
analysis is also shown.
Numerical analyses presented in this paper show that the 
model based on the combined finite-discrete element method 
enables realistic modelling of cracks in reinforced concrete 

structures all the way to the failure, as well as determination 
of the way in which the dry stone masonry structure will 
collapse. The structural behaviour after failure can also be 
monitored, which is significant in the analysis of the effects of 
structural failure and collapse.
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