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Analysis of frame structure vibrations induced by traffic

A simple numerical model for the dynamic analysis of 2D frames in the frequency domain, 
based on the Spectral Element Method (SEM), is presented in the paper. The influence of 
soil-structure interaction is taken into account. The dynamic stiffness of rigid foundations 
is determined by the Integral Transform Method (ITM). Three frames with a different 
number of storeys are analyzed with respect to vibrations caused by tram and road traffic. 
The influence of the soil-structure interaction on natural frequencies and amplitudes of 
vibrations is considered. The assessment of the way in which humans are affected by 
traffic-induced vibrations is conducted according to British Standard BS:6472.
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Prethodno priopćenje
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Analiza vibracija okvirnih konstrukcija uzrokovanih prometom 

U radu je prikazan jednostavan numerički model za proračun vibracija ravninske okvirne 
konstrukcije u frekvencijskoj domeni, primjenom spektralnih elemenata u kome je 
međudjelovanje tla i zgrade uzeto u obzir. Dinamička krutost krutog temelja određena je 
metodom integralne transformacije. Analizirane su tri okvirne konstrukcije različite katnosti 
na djelovanje vibracija od tramvajskog i cestovnog prometa. Razmatran je utjecaj tla na 
vlastite frekvencije i odgovor konstrukcije. Analiza djelovanje vibracija na ljude provedena 
je prema britanskom standardu BS:6472.
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Analyse verkehrsbedingter Vibrationen von Rahmenkonstruktionen

In der vorliegenden Arbeit ist ein einfaches, auf der Spektrale-Elemente-Methode (SEM) 
beruhendes, numerisches Model für die dynamische Analyse von 2D Rahmen in der 
Frequenzdomäne dargestellt, das die Boden-Bauwerk-Interaktion berücksichtigt. Die 
dynamische Steifigkeit des Bodens ist mittels der Integraltransformationsmethode (ITM) 
berechnet. Drei Rahmenkonstruktionen verschiedener Anzahl von Stockwerken sind unter dem 
Einfluss verkehrsbedingter, durch Straßen- und Straßenbahnverkehr verursachter Vibrationen 
analysiert. Dabei sind der Einfluss von Boden-Bauwerk-Interaktion auf die Modalfrequenzen 
und Vibrationsamplituden. Eine Bewertung der verkehrsbedingten Vibrationen in Bezug auf 
den Menschen, nach den Anordnungen des British Standard BS:6472, ist dargestellt.
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1. Introduction 

The population growth and rapid development of cities has lead 
to a substantial increase of traffic in urban areas. Significant 
traffic vibrations are mainly caused by heavy vehicles, i.e. 
buses, trucks and trams. Traffic vibrations are low frequency 
disturbances caused by dynamic and oscillation forces of moving 
wheels. Disturbances propagate through soil in all directions, 
pass through building foundations, and cause vibrations of 
buildings, which might negatively affect not only buildings, but 
also humans or sensitive equipment. The generation of traffic-
induced ground vibrations, the transmission path, the effects 
on humans and their health, the effects on buildings, as well as 
measures for reducing such vibrations, have been investigated 
by researchers in many countries, [1, 2]. The need to predict 
traffic vibration effects on buildings has led to the creation of 
numerous numerical models, [3, 4]. A comprehensive numerical 
model, which includes wave propagation through soil, from the 
source to the building, and building vibrations, i.e. the source-
receiver model, is a complex model based on general dynamic 
soil-structure interaction methods [5]. The detailed dynamic 
analysis is carried out using the finite element method (FEM) 
in the frequency domain, or the boundary element method 
combined with the finite element method [3]. However, these 
methods are not simple and their application is burdened 
with some numerical problems. On the other hand, current 
commercial programs are unable to grasp all aspects of this 
problem. The analysis of traffic vibration effects on reinforced 
plane frames (RC), based on the commercial program ETABS, 
is presented in paper [4]. But, the most important factors in 
traffic-induced building vibrations are not taken into account: 
the effect of soil and the vertical component of vibrations. The 
analysis of RC frames using spectral elements [6] is regarded 
as an improvement of the preceding model, although the 
soil-structure interaction is not taken into account. Since 
the dynamic response of buildings is strongly dependent on 
dynamic characteristics of soil-structure systems, proper 

modelling of both the structure and the soil is of crucial 
significance. One of possible and relatively simple methods 
is the substructure method [4]. It treats the soil-structure 
system as a set formed of two substructures, each with 
entirely different characteristics. One substructure, the 
building, has finite dimensions, while the other substructure, 
the soil, is unbounded, i.e. infinite. Buildings are usually 
modelled using the finite element method, while soil can 
be modelled by some other numerical techniques, such as 
the finite element method, the boundary element method, 
or by using some analytical techniques such as the integral 
transform method (ITM) [7].
The objective of this paper is to derive a simple numerical 
model to analyse traffic-induced vibrations of 2D frames, 
taking into account the soil-structure interaction. The analysis 
is performed in the frequency domain using the substructure 
method. The structure is modelled using spectral elements, 
while the dynamic stiffness matrix of the soil is calculated using 
the ITM. It is assumed that the foundations are infinitely stiff, 
and that they rest on the surface of an elastic half-space. The 
computer program for numerical analysis has been developed 
in the MATLAB program language [8]. The influence of traffic-
induced vibrations on three reinforced concrete frames of 
different heights (2-storey, 6-storey, and 12-storey) is analysed. 
Ground vibrations are generated by tram traffic and by a heavy 
truck crossing rubber obstacles. The effects of frame height 
and vehicle characteristics on the dynamic response of frames 
are determined. Finally, principal results are presented.

2. Substructure methods

A soil-structure system subjected to traffic-induced 
vibrations is presented in Figure 1. The system consists of 
two substructures, the reinforced concrete frame and the 
soil. The symbol s (structure) denotes structural nodes, while 
i (interaction) denotes the nodes at the contact between the 
structure and the soil.

Figure 1. Soil-structure system
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In the substructure method, the dynamic equation of the 
soil-structure system (1) is formulated as a function of total 
displacement in the frequency domain [5]. It is a system of 
linear algebraic equations with complex coefficients:

 (1)

where Kss
S , Ksi

S , Kis
S and Kii

S are the dynamic stiffness sub-
matrices of the structure, Kii

F js the dynamic stiffness 
matrix of the foundations, ûs and ûi are amplitudes of the 
displacement vectors of structural nodes (s) and interaction 
nodes (i), respectively ûi

' is the traffic-induced amplitude of the 
soil displacement vector in the free field, i.e. in soil without 
the structure, Figure 1c [5]. The equation (1) is valid for each 
frequency w. All sub-matrices and displacement vector 
amplitudes are frequency dependent.

3. Spectral element method

In the dynamic FEM analysis, the number of finite elements 
depends on the highest frequency. Thus, the number of finite 
elements can be quite considerable for high frequencies. In the 
one-dimensional spectral element formulation, the dynamic 
stiffness matrix is obtained using interpolation functions, 
which are exact solutions of the partially differential equation 
of motion. Therefore, only one element can exactly represent 
the dynamic behaviour of a structural member regardless 
of the vibration frequency. By the use of spectral elements, 
the number of elements, i.e. the number of unknowns, is 
reduced considerably, while the accuracy of numerical results 
is increased. 
The dynamic stiffness matrix for the Euler-Bernoulli beam was 
developed by Kolousek in 1941. Dynamic stiffness matrices 
for axially loaded beam combined with bending and torsion 
were developed more recently, [9, 10, 11]. Despite numerous 
advantages of dynamic analysis based on spectral elements, 
compared to finite elements, there are only few examples 
where spectral elements have been used for vibrations 
analysis of one-element systems or simple frames [6, 12, 13, 
14, 15, 16].  

Figure 2. Euler-Bernoulli spectral element

The dynamic stiffness matrix for the Euler-Bernoulli beam, 
presented in Figure 2, is obtained using dynamic stiffness 
matrices for the axial and flexural stress of a beam element. 
The dynamic stiffness matrices for axial and flexural vibrations 

are obtained from the principle of virtual work:

K B EB N ND = −∫ ∫T

V V

TdV dVω ρ2  (2)

where E is the matrix of elastic constants, N is the 
corresponding matrix of interpolation functions, i.e. B = N" for 
axial deformation, B = N’’ for bending [13]. The interpolation 
functions satisfy differential equations of displacement:
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The general solutions of equations are given in the form of 
Fourier series:

 (4)

where ûn(x, wn) i ŵn(x, wn) are the spectral components of 
displacements in x and z directions, at the frequency wn. The 
interpolation functions N for axial and flexural vibrations are 
obtained by satisfying the governing equation (3) and boundary 
conditions at the end of elements. The dynamic stiffness matrices 
for the bar element KD

a
 and beam element KD

s  are obtained 
from equation (2). Their elements are functions of the element 
geometry and frequency w, and are given in the Appendix. A 
detailed derivation can be found in literature [9, 13, 15].

4. Dynamic stiffness of foundation

The foundation dynamic stiffness matrix has been developed 
by assuming that the foundation is prismatic and rigid, and 
that it rests on the surface of an elastic, homogeneous half-
space, Figure 3.  

Figure 3. Rigid foundation in half-space

Figure 4. Interaction surface between soil and foundation

Rigid foundation has three degrees of freedom in the xOz 
plane, two displacements and one rotation about centre of the 
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base interface O. Vectors of nodal forces and displacements, 
P0 and ûo for a frequency w are

 (5)

The relationship between nodal forces P0 and displacements 
ûo can be written as follows 

 (6)

where Ko is the dynamic stiffness matrix for a rigid foundation 
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 (7)

The elements of stiffness matrix depend on the frequency w. 
For a rigid surface the foundation coupling term is equal to 
zero, kxj @ 0.
The dynamic stiffness matrix for a rigid foundation is obtained 
from the dynamic stiffness matrix for a flexible foundation, 
Kii
F presented in Figure 4, by equalizing the deformation 

energy for the flexible and rigid foundations [19]. The dynamic 
stiffness matrix Kii

F  relates forces Pii and displacements uii at 
the contact surface by the following equation

P K uii ii
F

ii=  (8)

and can be obtained by inverting the flexibility matrix

K Fii
F

ii
F= ( )−1  (9)

The element fij of the dynamic flexibility matrix Fii
Frepresents 

the displacement in node i at the interface due to the unit 
harmonic force at node j. It can be obtained from the Lame’s 
wave equations in a homogeneous elastic half-space [17]

( ) , ,λ µ µ ρ+ + =u u uk ki i kk i ,     i = x, y, z (10)

where l and m  are the Lame’s constants, r is the mass 
density of the soil and ui is the displacement component. The 
equation is solved by the Integral Transform Method (ITM) [18, 
19] which is schematically described in Figure 5.

Figure 5. ITM procedure scheme

In ITM, by applying the Helmholtz decomposition [17] and the 
threefold Fourier transform x kx⇔ , y ky⇔ , t ⇔ω  [20], the 
partial differential equations  are transformed into ordinary 
differential equations regarding the z direction in the wave 
number domain:

 (11)

where F=F(x, y, z, t) and YT= [Yx Yy Yz]T are scalar and vector 
displacement potentials, while kp = w/cp and ks = w/cs are the 
wave numbers, and 

c cp s=
+

=
λ µ
ρ

µ
ρ

2 ,  (12)

are velocities of longitudinal (P) and transverse (S) waves, 
respectively. The potential Yz is assumed to be zero, i.e. Yz=0.
Equations are solved analytically in the transformed domain. 
The result can be returned to the original domain by the 
inverse Fourier transform. The displacement vector for an 
arbitrary point at the interface is obtained from equation 
taking into account the Somerfield radiation condition 

 (13)

where A2, B2x and B2y are the integration constants, whereas 
l1 and l2 are 

λ λ1
2 2 2 2

2
2 2 2 2= + − = + −k k k k k kx y p x y s  i   (14)

Integration constants are determined from the boundary 
conditions at the interface

 (15)

where k k kr x y
2 2 2= +  according to [18].

Elements of the flexibility matrix are obtained numerically 
[19]. The soil-foundation interface is divided into NxN 
interaction nodes i, Figure 4. Since the frame is in the plane 
xOz, the unknown displacements are u and w, in the x  and 
z direction. The flexibility matrix, Fii

F, has 2Nx2N rows and 
columns. Theoretically, the unit harmonic force has to be 
applied at each interaction point in x  and z direction, and the 
nodal displacement must be calculated for each frequency w. 
These displacements present elements of the flexibility matrix 
for the proposed frequency. In practice, the displacement field 
is obtained only once for each frequency w, due to the unit 
force at node (i,j), Figure 6a. The displacement field for any 
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other unit force applied in an arbitrary node (m, n), Figure 6b, 
is obtained from the following equation

u m k n l u i k j lz z( , ) ( , )+ + = + +  (16)

where k and l are increments of indices i and j. 

Figure 6.  Displacement at the surface of half-space due to unit 
harmonic force 

The dynamic stiffness matrix for the rigid, prismatic, massless 
foundation, Figure 3, can be obtained from the dynamic 
stiffness matrix for the contact surface Kii

F using the following 
transformation

K a K ao = T
ii
F  (17)

where a is kinematics matrix

a a a aT t t
i

t
N x N

=  1 3 2
   (18)

The kinematics matrix defines the relation between the 
displacement vector of all nodes at the interface and the 
displacement vector of node O. Each sub-matrix ai relates the 
displacement vector at node i, ûi točke i i and the displacement 
vector û0 at O

ûi = ai û0 (19)

The sub-matrix ai is obtained by kinematics consideration in 
the following form

ai
ix

=
−











1 0 0
0 1

 (20)

wherexi is the coordinate of node i.

The dynamic stiffness matrix Ko is frequency dependant. Its 
elements Kij,o are complex numbers. Therefore, each element 
Kij,o can be written as the sum of the real and imaginary part

K a K a K aij o o ij o o ij o o, , ,Re Im( ) = ( )( ) + ( )( ),  i, j = x, z, jy (21)

where a0=wB/cs

 
the dimensionless frequency and 2B is 

dimension of the foundation. Dimensionless values of the 
real and the imaginary part of the dynamic stiffness matrix 
represent the impedance functions. The real part of Re(Kij,o) 
represents the foundation stiffness, while the imaginary part 
Im(Kij,o) represents the radiation damping of the foundation. 
Impedance functions of a rigid, massless, square foundation 
in the elastic half-space, are calculated using the presented 
approach for the frequency range a0∈ (0, 2), [21]. The 
impedance functions, presented in Figure 7, are used in the 
analysis of traffic-induced vibration of frames. 
In the frequency domain, the material damping can simply be 
taken into account using the complex modulus

 E E i G G i= + = +( ) ( )1 1η η ,  (22)

where h is the hysteretic damping coefficient. Eqs. present 
an additional advantage of the analysis in frequency domain, 
which enables implementation of a different damping 
coefficient for particular elements in the numerical model. 
This is very important for the soil-structure analysis, since 
the material damping in the soil and in the structure differs 
considerably. In addition, the radiation damping in the soil 
is directly taken into account by impedance functions.

6. Analysis of traffic-induced frame vibration 

The influence of traffic-induced vibration is analysed on 
three different two-bay, reinforced concrete (RC) frames of 
different height: 2-storey, 6-storey and 12-storey, Figure 
8. The numerical analysis is carried out using the proposed 

Figure 7. Impedance functions for square foundation in elastic half-space
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numerical model and the computer program written in the 
MATLAB program language [8]. 

Figure 8. Typical frame

The frames bay width is 4 m, the ground floor height is 3.5 m, 
while the other story height is 3 m. The storey mass equals 
to 9 t, which is distributed as an additional mass along the 
beams. The damping coefficient is 5 %. Geometrical properties 
of the frame from Figure 8 are given in Table 1. 
Two different boundary conditions are investigated. In the 
first case columns are fixed; in the second case columns are 
founded on the rigid, square, massless foundation measuring 
2x2 m.
The properties of the half-space are:
 - mass density: r = 2000 kg/m3

 - velocity of S-waves: cs = 100 m/s
 - Poisson’s coefficient: n = 0.33
 - damping coefficient:  2 %. 

A minimum damping coefficient has been adopted so as to 
emphasize the influence of radiation damping on the soil-
structure response.

Table 1. Geometrical properties of frames 

6.1.  Influence of soil-structure interaction on 
natural frequencies

In general terms, soil changes natural frequencies of the 
system. The literature gives approximate methods for 
solving natural frequencies of frames flexibly founded on 
soil. In paper [22] the influence of elastic foundations on 
high buildings natural frequencies was calculated using 
the approximate continuum analysis. An advantage of the 
SEM is that the exact solution of natural frequencies of the 
frame-soil system can be obtained easily and efficiently, 
without neglecting the radiation and material damping in the 
soil. Natural frequencies are obtained from the requirement 
that the determinant of the soil-structure dynamic stiffness 
matrix is equal to zero

detK = │K│ = 0                                                                           (23)

This problem is transcendental. Practically, the number of 
natural frequencies is infinite, and these values can be found 
using various searching techniques. In this paper, the natural 

Material properties 
of frames:

E = 2 107 [kN/m2]
r = 2,4 [kN/m3]
n = 0,15

Heights: 2, 6, 12-storey

Frame
Columns Beams

[cm]External [cm] Internal [cm]

Two-storey 20x30 25x30

23x40

Six-storey 20x30
25x50 (1-2 floor)
25x40 (3-5 floor)

25x30 (6 floor)

Twelve-storey
25x40 (1-5 floor)
20x35 (6-8 floor)

20x30 (9-12 floor)

25x80 (1-2 floor)
25x70 (3-4 floor)
25x60 (5-7 floor)

25x50 (8-10 floor)
25x40 (11-12 floor)

Mode
Two-storey frame Six-storey frame Twelve-storey frame

Fix Flexible ∆ [%] Fix Flexible ∆ [%] Fix Flexible ∆ [%]

1 2,37 2,29 3,4 1,08 10,1 6,5 0,62 0,56 9,7

2 7,49 7,4 1,2 3,22 3,11 3,4 1,81 1,74 3,9

3 5,48 5,36 2,2 3,21 3,11 3,1

4 7,95 7,81 1,8 4,7 4,55 3,2

5 10,71 10,55 1,5 6,34 6,14 3,2

Mode
Two-storey frame Six-storey frame Twelve-storey frame

Fix Flexible ∆ [%] Fix Flexible ∆ [%] Fix Flexible ∆ [%]

1 15,79 15,44 2,2 12,22 10,55 13,7 8,11 7,9 2,6

2 18,06 21,68 -20,0 13,41 12,8 4,5 13,83 11,58 16,3

3 19,31 50,8 -163,1 16,68 16,24 2,6 16,74 13,57 18,9

4 22,21 57,5 -158,9 18,34 18,09 1,4 18,13 15,93 12,1

5 39,53 63 -59,4 19,25 19,94 1,6 18,83 18,76 0,3

Table 2. Natural frequencies for horizontal vibrations [Hz]

Table 3. Natural frequencies for vertical vibrations [Hz]
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frequencies w are obtained as the maximum of the following 
logarithmic function 

f ( ) log
( )

ω
ω

=
1

K  (24)

Natural frequencies for horizontal and vertical vibrations of 
rigidly and flexibly founded frames are presented in Tables 
2 and 3. The difference D between the natural frequencies 
for fixed base frames and flexibly founded frames is given in 
percentages. 
The soil-structure interaction reduces (SSI) natural frequencies 
of horizontal vibrations. This reduction is significant in the 
first mode, and it grows as the number of frame storeys 
grows, which is due to the effect of base rotation. The 
biggest difference between natural frequencies for the 
horizontal vibration of fixed base and flexible foundations 
is 9.7 % for the first mode of the twelve-storey frame. The 
influence of soil-structure interaction on natural frequencies 
of vertical vibration is more pronounced. It depends on the 
vertical stiffness ratio of frame and soil. Soil reduces natural 
frequencies for vertical vibrations in the six-storey and 
twelve-storey frames, but increases natural frequencies in 
the two-storey frame, except for the first mode. The biggest 
difference between natural frequencies for vertical vibrations 

of fixed base frames and flexible founded frames is 163.1 % for 
the third mode of the two-story frame. 

6.2. Traffic-induced frame vibrations

Traffic-induced ground vibrations were measured at the 
Bulevar kralja Aleksandra, in Belgrade, at the ground level, 
about 11 m from the tram tracks/road (the average distance 
between the road and buildings in the street). 
Velocity measurements in three orthogonal directions were 
carried out using the I/O System One and a three-component 
geophone, Figure 9 [23].

Figure 9. Geophone

Figure 10. Time history and power spectrum of a) vertical and b) horizontal ground velocity (tram, v=20 km/h) 

Figure 11. Time history and power spectrum of a) vertical and b) horizontal ground velocity (truck v=50 km/h)
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The sources of vibrations were:
 - normal road traffic,
 - 14 t truck, travelling at 50 km/h,
 - 14 t truck, travelling at 50 km/h across a 3 cm thick, 3 m 

long rubber obstacle,
 - a tram travelling at 20 km/h.

 The highest vibration levels were generated by the tram and 
the heavy truck running across the rubber obstacle. Therefore, 
the ground vibrations induced by these two sources were 
used as an input ground motion in traffic-induced vibration 
analysis of multi-storey frames.
Velocity time histories and power spectra for horizontal 
and vertical ground vibrations caused by a tram and a truck 
are presented in Figures 10–11. Time histories of ground 
displacements and the corresponding power spectra, obtained 
by integration of ground velocities, are presented in Figures 
12–13. In case of tram traffic, the predominant frequency 
range for velocity and displacement varies between 17 and 
27 Hz for horizontal and vertical vibrations. The predominant 
frequency range for road traffic induced by a heavy truck 
crossing the rubber obstacle varies between 2 and 6 Hz for 
both horizontal and vertical vibrations. Higher amplitudes 
have been obtained for vertical vibrations.

6.2.1. Numerical results

Due to the specified traffic, the numerical analyses of vibrations 
of the fixed base frames and flexibly founded frames were 
carried out using a computer program developed in MATLAB. 
The frames were subjected to ground displacements due 
to tram and truck traffic, as shown in Figures 12 and 13. 
Numerical results are presented as envelopes of horizontal 
and vertical displacement and velocity of frames in Figures 
14–16, where vertical displacements were observed in mid-
points of the beams. Analyses were performed with and 
without soil-structure interaction (SSI).

Horizontal displacements: A truck crossing a rubber obstacle 
induces larger horizontal displacements than tram traffic for 
all frames, since the dominant horizontal vibration modes 
fall into the dominant frequency range for truck traffic (2–6 
Hz). The two-storey frame experiences the largest horizontal 
displacements (fundamental frequency is 2.37 Hz), while the 
twelve-storey frame has the lowest horizontal displacements.

Vertical displacements: The largest vertical displacements 
occur on top floors. Vertical dynamic responses of frames 
are influenced by lower vertical vibration modes. Vertical 

Figure 12. Time history and power spectrum of a) vertical and b) horizontal displacement (tram, v=20 km/h)

Figure 13. Time history and power spectrum of a) vertical and b) horizontal displacement (truck, v=50 km/h)
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ground displacements due to the truck crossing the rubber 
obstacle are larger than vertical ground displacement due 
to tram traffic in the frame base. However, larger vertical 
displacements at the top of the fixed bas 2-storey and 
six-storey frames occur due to tram passage. For flexible 
founded frames, these displacements are larger due to 
truck passage.

The soil-structure interaction changes the dynamic response of 
frames. Generally, horizontal and vertical displacements of the frames 
are reduced when the soil stiffness is taken into account. The soil 
influence is larger in case of vertical vibrations, as shown in Figures 
14b, 15b, and 16b. If the stiffness ratio between the structure and the 
soil is larger, the displacements in vertical directions are lower. This is 
more pronounced if vibrations are induced by tram traffic. 

Figure 14. Displacement envelopes of a two-storey frame: a) horizontal displacement; b) vertical displacement

Figure 15. Displacement envelopes of a two-storey frame: a) horizontal displacement; b) vertical displacement

Figure16. Displacement envelopes of a twelve-storey frame: a) horizontal displacement; b) vertical displacement
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Humans are sensitive to vibration velocities. Therefore, the velocities 
are calculated using the well known relationship between the 
velocity •u(w) and displacement u(w) in the frequency domain

u i uω ω ω( ) = ⋅ ( )  (25)

where w is the angular frequency, and i = √-1. The velocity 
in the time domain •u(t) is obtained by applying the inverse 
Fourier transform to the velocity •u(w). Vertical and horizontal 
velocity envelopes of all frames are presented in Figures 17-
19.

Figure 19. Velocity envelopes of a twelve-storey frame: a) horizontal velocity; b) vertical velocity

Figure 18. Velocity envelopes of a six-storey frame: a) horizontal velocity; b) vertical velocity

Figure 17. Velocity envelopes of a two-storey frame: a) horizontal velocity; b) vertical velocity
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Horizontal velocities: Tram traffic causes larger ground 
velocity amplitudes in comparison to truck traffic, but larger 
velocity amplitudes occur at the top off all frames due to truck 
passage. Horizontal velocities are attenuated in all frames 
due to SSI.

Vertical velocities: Frame undergoes larger vertical velocities 
for tram traffic in comparison to truck traffic, because 
natural frequencies for vertical vibrations fall into the 
range of predominant frequencies for vertical tram-induced 
ground vibrations. Vertical velocities are attenuated in frame 
structures due to SSI. 
Attenuation of displacements and velocities due to SSI 
are influenced not only by the soil flexibility but also by the 
damping in soil (radiation and material). We could say that soil 
behaves as a viscous damper.

7. Assessment of vibration effects on humans

Although traffic-induced vibrations can cause just minor 
plastic damage to old buildings, they can have annoying 
effects on humans. Several countries have adopted standards 
that define the threshold of allowable vibrations in buildings. 
Since such a standard does not exist in Serbia, the British 
standard BS: 6472, [24] is used to analyze the effect of frames 
vibrations on humans. The effect on humans is analyzed 
using the maximum velocity obtained at the top floor of the 
frame (PPV-peak particle velocity) 

PPV u t= ( ) max   (26)

Horizontal PPV values do not exceed the perception threshold 
according to BS: 6472, for both fixed base frames and flexibly 
founded frames, Fig. 20. Unlike horizontal, vertical PPV values greatly 
exceed the limit for fixed base frames, but they fall below the limit 
when the SSI is taken into account, Fig.21. Therefore, the SSI has a 
positive influence on vibrations, i.e. it reduces vibration velocities and 
their negative effects on humans in buildings. This effect is more 
pronounced for "soft" soil (soil with a small S-wave velocity).

8.  Mitigation measures for traffic-induced 
vibration 

Traffic-induced vibrations are low frequency disturbances. 
Their frequency content depends on vehicle type and speed, 
and varies between 1 and 30 Hz. They affect lower vibration 
modes of buildings, independently of the number of storeys and 
structural stiffness. Therefore, the measures aimed at reducing 
traffic-induced vibrations are focused on the reduction of 
vibrations at the source, and prevention of their transmission 
from the source to the structure. Preventive measures to 
reduce traffic-induced vibrations to an acceptable level are:
 - maintenance of road surfaces,
 - control of traffic flow and speed,
 - setting in-ground barriers between the road and the 

structure,

Figure 20. Horizontal PPV of the top floor: a) tram traffic, b) truck traffic, (PPV-peak particle velocity) 

Figure 21. Vertical PPV of the top floor: a) tram traffic, b) truck traffic, (PPV-peak particle velocity)
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 - increasing the distance between the road and the structure, 
 - isolation of building foundations, or isolation of floors.

Surface roughness is the main cause of vibrations induced 
by moving vehicles. The maintenance of road surfaces 
in urban zones significantly reduces vertical vibration 
amplitudes. However, this measure calls for substantial 
financial investments. Therefore the control of traffic flow, 
i.e. restricting passage of heavy vehicles, and speed limit 
reductions, are efficient measures that can easily be applied. 
Placing an open-trench between the pavement and the 
building is an effective way of stopping wave propagation 
through the ground. An alternative to open-trenches are 
trenches filled with a material (concrete) whose stiffness is 
significantly higher than that of the surrounding soil. Barriers 
made of sheet-piles measuring 0.5 to 1 m in diameter can 
also be used. The afore mentioned measures are used for 
existing buildings.
For new buildings, vibrations can be reduced by increasing 
the distance between buildings and roads. An expression for 
surface waves attenuation is:

A A
r
r

e r r
2 1

1

1

1 2
2 2=











− −( )
/

α  (27)

where A1 and A2 are the amplitudes of vertical vibration at 
points 1 and 2, at radii r1 and r2 from the source; a is the 
coefficient that depends on the soil characteristics. 
The use of foundation isolation or floor isolation systems 
to reduce traffic-induced vibration is possible for structures 
of a very high importance. However, isolation systems are 
expensive and practically inapplicable for residential buildings. 

7. Conclusions

A simple numerical model for the 2D dynamic soil-structure 
interaction analysis in the frequency domain is presented in 
this paper. A frame structure is modelled by spectral elements, 
while the dynamic stiffness of the soil is determined using 
the integral transform method. The computer program for 
the analysis of 2D frames was developed in the MATLAB 
program language. The dynamic response of three different 
storey frames, influenced to tram traffic and a truck crossing 
a rubber obstacle, was analysed for the case with SSI and the 
case without SSI. The major conclusions are:
 - SSI reduces natural frequencies of 2D frame vibrations; this 

reduction is higher for vertical vibrations and low-storey frames;
 - Structural response is higher for fixed base frames because 

soil reduces structural vibrations; if the stiffness of the 
building is higher compared to soil stiffness, the effect of 
SSI is more pronounced; 

 - The SSI effect is more pronounced in vertical vibrations of 
all frames;

 - For fixed base frames, greatest displacements are induced 
by tram traffic, while for frames with flexible foundations 

greatest vertical displacements are caused by the truck 
crossing a rubber obstacle;

 - The two-storey frame is most susceptible to vertical 
vibrations, while the twelve-storey frame is most 
susceptible to horizontal vibrations, caused by the truck 
crossing a rubber obstacle;

 - PPVs of horizontal vibrations are lower than vibration limits 
for human perception according to BS: 6472, regardless of 
the foundation type; 

 - Vertical PPVs are higher than threshold values for fixed 
base frames. The SSI reduces the PPVs below this limit, 
which shows that the SSI has a positive effect on dynamic 
response.

Due to negative effects of vibrations on humans, the dynamic 
analysis of traffic-induced ground vibrations should be carried 
out with great care, taking into account the SSI. Especially 
sensitive are the cases where a stiff structure is founded on 
a very soft soil, and when the vehicle velocity and suspension 
system might cause vibrations close to the predominant 
vibration frequency of the coupled soil-structure system.  
The obtained results show that spectral elements (SE) can be 
used quite successfully in the analysis of a frame structure-
soil system. The proposed model has several advantages 
when compared to standard numerical models of frame 
structures. It requires lower number of elements for the 
analysis of high frequency vibrations in comparison to the 
finite element method, the influence of the soil can simply be 
taken into account by adding the dynamic stiffness of soil to 
the dynamic stiffness of structure and, finally, velocities and 
accelerations of structural nodes can easily be calculated in 
the frequency domain from the obtained displacements.
The presented numerical model is simple, efficient, and 
safe, and can be used in the dynamic analysis of the soil-
frame interaction for various dynamic actions: explosions, 
pile driving, earthquakes, etc. In addition, for certain types of 
foundations, the dynamic stiffness can be taken directly from 
literature [25]. In the case of complex foundations, it can be 
calculated using some of the known methods, like the finite 
element method, or the boundary element method. 
The results of the proposed method should be additionally 
validated through comparison with results of a detailed 
building model, or using measurements of an existing building. 
Based on that, additional conclusions about the efficiency of 
the proposed model could be reached, which will be the object 
of further investigations.
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Appendix
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