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1. Introduction

Construction projects are target-oriented and planned 
undertakings, whose objective is to build, reconstruct or remodel 
various construction facilities. These projects involve dynamic 
processes that can be divided into four phases: conceptualisation, 
definition, realization, and use of the construction facility. 
Considerable funds are invested in the realization of these phases. 
The latter are characterized by participation of a considerable 
number of companies, institutions, and organisations, and by 
the use of considerable quantities of various resources and 
machinery. The realization of construction projects is often time-
consuming, and contractors are required to complete the project 
within the contracted time, in accordance with high quality 
standards, and at lowest possible costs. This is why participants 
in construction are faced with the problem of how to optimise 
construction time, minimise construction costs, and respect 
other relevant criteria. The activities important for the realization 
of construction projects will be considered in this paper because, 
being related to the time, costs, work quantities, technologies 
used, and work processes, they actually take up the dominant part 
of construction projects. The project realization phase starts with 
conclusion of contract between the client and the contractor, and 
ends by the final inspection, handover of the project to the client, 
and by the delivery of the operating permit. The optimization 
method described in this paper can also be applied for realization 
of other phases of a construction project.
The start of development of methods for the planning and control 
of realization of projects and production is associated with the 
work of Henry L. Gantt, an American engineer and one of the 
pioneers of scientific management and organisation of work [1]. In 
1917, Gantt proposed and developed a method that is still in use 
today, i.e. the Gantt chart method, where activities are presented 
in form of lines. First methods with mathematical formulations 
for construction scheduling, cost and time optimization, and 
cost or resource use levelling, were proposed in the 1950s 
[2-4]. The American corporation E.I. du Pont de Nemours & 
Company was formed a team in 1955 in order to improve and 
develop new planning techniques. This team proposed a new 
planning technique named the Critical Path Method (CPM) with 
the critical path diagram in which activities are presented in form 
of arrows, while events are presented as circles. First papers for 
determining an optimum work scheduling using the primal and 
dual linear programming problem were published in 1961 [2, 3]. It 
is at that time that the Fondahl’s heuristic method for project cost 
optimization, based on linear dependence between the activity 
costs and activity realization time, was also developed [5]. In 
this method, called the “Precedence Method" (PMD method), 
the critical path diagram contains activities presented in nodes 
and marked with circles or rectangles, while their correlations 
and orders of precedence are marked with arrows. This heuristic 
optimization method was modified, simplified and adjusted to the 
realization of construction projects [6, 7]. The paper [8] analyses 
the cost of construction of several types of construction facilities/

structures and proposes simple formulas for an approximate 
calculation of an economical cost-dependent construction time, 
while also proposing forms for defining the most favourable 
work front. The problem of a line of balance optimization is 
mathematically formulated in [9] as a linear programming task, 
taking into account direct and indirect construction costs to which 
this kind of plans can be applied. The heuristic approach is used 
to optimise the critical path diagram involving a great number 
of activities, and the results are obtained using the project 
management program package PCS (Project Control System) [10]. 
Optimization problems in construction industry and optimization 
of industrial facilities are considered in [11-17].
The single criterion problem of optimization of time as related to 
costs (time-cost trade-off) is considered in many professional and 
research papers. The single criterion procedure for determining 
an optimum time for realization of projects has some limitations, 
i.e. it does not fully consider the quantity of available resources, 
which are limited [18]. It is therefore indispensable to take into 
account available resources during determination of typical 
durations of activities, especially for a greater number of activities 
that take place at the same time. A considerable number of 
published papers deal with the issue of levelling of resources. The 
number of restrictions in the mathematical optimization model 
must be increased to take into account these factors, which 
greatly complicates determination of optimum solutions.
The complex problem of time and cost optimization under the 
influence of risks and limited resources is considered in [19]. 
The problem of resource control planning, construction time 
optimization, and distribution of resources for construction 
projects, is dealt with in [20, 21].
Heuristic methods, mathematical programming methods, and 
simulation methods, are used in the formulation of models 
and for solving optimization problems. Heuristic methods, 
including the Fondahl’s method, are often considered unsuitable 
for solving optimization problems, especially for critical path 
diagrams with a great number of activities, as they require many 
steps for obtaining the solution. This approach, defined as non-
computational by Fondahl, is unsuitable for the development 
of computer programs. The plan optimization problem solving 
using numerical and analytical mathematical programming 
methods, which are based on Karush-Kuhn-Tucker optimization 
conditions, is highly impractical due to a large number of 
unknown variables and constraints. In order to enable a more 
efficient solution of optimization problems, which are formulated 
as mathematical models, the use is increasingly made of genetic 
algorithms, evolutive strategies, simulated annealing techniques, 
particle swarms, ant colonies, etc. Probability methods and 
methods based on the theory of fuzzy sets are also used due to 
imprecision and uncertainty in the determination of parameters 
and model variables. The hybrid approach, which combines 
simulation techniques and genetic algorithms for solving time-
cost optimization problems, is applied in [22]. It has been shown 
that this combination enables definition of optimum durations 
and optimum orders of activities. A more recent approach for 
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simultaneous optimization of the total project realization time 
and costs using genetic algorithms is presented in [23]. The time-
cost optimization problem has also been solved using the ant 
colony method [24], genetic algorithm method, and Monte Carlo 
method [25-27].
In addition, the time-cost optimization problem has been solved 
using the stochastic linear programming, taking into account the 
variability of financing, and the uncertainty of project realization 
time [28]. The financial probability for realizing the project has 
been expressed as a stochastic constraint, while the uncertainty 
of realization is included in the model using the PERT method. 
The algorithm for determining the minimum project duration 
with limited resources is used in [29]. A hybrid evolutive algorithm 
for optimising the time and cost of realization of construction 
projects is developed in [30]. The multicriteria linear programming 
for an optimum planning of projects characterised by reiterating 
segments, as in line of balance planning, is used in [31]. The criteria 
are: project realization time, duration of individual segments, 
delay in realization of such segments, and total project costs. An 
optimum line of balance planning with resource limitations and 
an optimum assignment of workers to appropriate tasks using 
the genetic algorithm method, is presented in [32]. The particle 
swarm optimization method for bi-criterial time-cost analysis is 
applied in [33]. Direct costs and project realization time are taken 
as criteria, while constraints are formulated according to duration 
of activities and their mutual relationships. The proposed 
particle swarm algorithm is used to determine the Pareto front 
representing the curve that defines an optimum correlation 
between two chosen criteria. The problem of evaluation of total 
cost in building construction is considered in [34]. The problem of 
discrete time-cost optimization, with multimodal constraints as 
related to resources, and based on fuzzy genetic algorithms, is 
considered in [35-37].
This paper provides a mathematical formulation of the time-cost 
optimization problem as related to realization of construction 
projects, where the problem is solved by the particle swarm 
optimization, which is a recent optimization method. This 
algorithm, normally used for determination of optimum solutions 
in different areas, is adapted in this case to the  solution of the 
time-cost optimization problems.

2. Mathematical optimization model

The mathematical model for the time-cost optimization during 
realization of construction projects, as presented in this paper, 
is formulated as a nonlinear (quadratic) programming problem 
with linear constraints. The mathematical model, as a problem 
of linear programming with the linear objective function and the 
linear constraints, was formulated in the early 1960s [2, 3].

2.1. Project realization time and constraints

As the mathematical model is formulated on the critical path 
diagram, the constraints arise from the mutual relationships 

between activities in the diagram and their possible durations, 
and the total realization of the project.
The minimum and maximum activity realization time can be 
calculated for each activity on the project Ai (i=1, 2, ….na). The 
minimum time TCi (crash time) is the time during which this 
activity can be realized the fastest under given conditions, 
using a particular technology and available resources. In 
addition to these times, the so called conventional time 
TEi is introduced [38], and this time is estimated for normal 
operating conditions.
In a general case, the relation between some given times can be 
shown using the following inequation:

TCi ≤ ti ≤ TNi ,     i = 1, 2, ... na  (1)

where na is the number of activities on a project. 

The following relation is valid for duration ti of the activity Ai

TCi ≤ ti ≤ TNi ,     i = 1, 2, ... na  

or 

ti ≥ TC, ti ≤ TNi ,     i = 1, 2, ... na  (2)

If TC denotes the shortest time and TN the longest time, and tpr 
the possible time of realization of a project, then the following 
is valid 

TC ≤ tpr ≤ TN

or

tpr ≥ TC,     tpr ≤ TN  (3)

The shortest project realization time TC is obtained for the 
shortest times TCi of realization of activities Ai, while the longest 
project realization time TN is obtained for the longest times TNi 
of realization of activities Ai (i = 1,2,...,na).
The length of the project realization phase tpr is equal to the sum 
of duration of activities tk on one of critical paths.

t tpr k
k

= ∑  (4)

In practice, there is another important condition that arises from 
the contract concluded between the client and the contractor: 
the project realization phase must be completed within the 
contract time tug. Thus we have:

tpr ≤ tug  (5)

Between the activities in the PMD diagram used in this paper 
there are nr links, and each link vj connects the initial activity As 
with the following activity Af, and so we have
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 - for the "start – end" link

LF LF tf s s− ≥  (6)

 - for the "start – start" link, with the time interruption of tp,s 
≥ 0;

LF LF t t tf s s p s f− − + ≥,  (7)

 - for the "end – end" link, with the time reserve of tz,f > 0

LF LF tf s z f− ≥ ,  (8)

The following is valid for the first activity A1

LF1 = t1 (9)

while the following applies to the last activity

LFna = tpr (10)

Inequations (2) to (8) and equations (9) and (10) define 
constraints with unknown variables for duration of activities 
ti and the latest completion of such activities LFi (i = 1,2,...,na), 
and so the number of variables is nv=2na. Two constraints (2) 
exist for each activity Ai, and for each link vj between activities 
there is nr of constraints. When we add to this two constraints 
(3), and one constrain (5), (9) and (10), we get the total number 
of constraints nu in the PMD diagram.

nu = 2na + nr + 5 (11)

2.2. Project realization costs and objective function

Project realization costs can be divided into direct and 
indirect costs. Direct costs are related to each activity 
separately, while indirect costs are related to the entire 
project realization phase. Direct costs cover the cost of 
labour, materials, energy, mechanical plant, and other 
resources. They are calculated separately for each activity 
on the project. Indirect costs contain overhead expenses, 
operating and contracting costs, technical and administrative 
personnel costs, site management costs, delay costs to 
be borne by the company according to the contract due to 
an unjustifiable delay of works, safety at work costs, etc. 
Indirect costs can be reduced with performance bonuses in 
case the contractor completes the work ahead of time. The 
sum of direct and indirect costs incurred during the project 
realization phase constitutes the total costs.
Direct costs CDi of activity Ai reduce with the extension of 
the time for realization of such activity. The link between the 
duration of activity and direct costs can be linear, bilinear or can 
assume the form of a nonlinear function, as shown in Figure 1. 
The bilinear and nonlinear links correspond to a greater extent 
to a real situation, especially for longer-lasting activities. In 
case of linear and bilinear links between activity duration and 
its costs, the project duration is optimised by means of linear 
programming.

Figure 1. Link between direct costs and duration of activities

In case of linear approximation of costs according to Figure 1a, 
we have

CD t CDN TN t CD T
CD CDC CDN T TN TC
i i i i i i i

i i i i i i

( ) = + −( )
= − = −

∆ ∆

∆ ∆

/
,

 (12)

If the time-cost approximation is made via quadratic parabola 
using the Lagrange interpolation formula, then directs costs of 
the activity Ai are:

CD t CDC LC t CDE LE t CDN LN ti i i i i i i( ) = ⋅ ( ) + ⋅ ( ) + ⋅ ( )  (13)

where

LC t
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t TC

i
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i
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 (14)
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Indirect costs are related to the total duration of the project 
realization phase tpr. The total time – indirect costs relationship, 
shown in Figure 2, is nonlinear and the linearization can be 
conducted, as in the preceding case, in the following way:

CI t CIC CIN CIC
TN TC

t TCpr i pr( ) = +
−
−

−( )

where TN and TC are the project realization phase completion 
times with normal and crashed duration of activities, while CIN 
and CIC are indirect costs in the project realization phase, which 
correspond to the times TN and TC.

Figure 2.  Link between duration of project realization phase and 
indirect costs

During the time tpr, indirect costs can be expressed, just like the 
direct costs, in form of a quadratic function, as related to the 
costs CIC, CIE and CIN, as shown in Figure 2.

CI t CIC LC t CIE LE t CDN LN tpr pr pr pr( ) = ⋅ ( ) + ⋅ ( ) + ⋅ ( )  (15)

Here the Lagrange quotients LC, LE and LN are calculated 
according to expressions (14) but, instead of times TCi, TEi i 
TNi, and the time ti, which are related to individual activities, 
the calculation is made with the times TC, TE, TN i tpr that are 
related to the project realization phase. The total costs for 
completion of the project realization phase within the time 
tpr are:

CU t CD CI tpr prt t,( ) = ( ) + ( )  (16)

where CD(t) are direct costs, while CI(tpr) are indirect costs. The 
total direct costs in the project realization phase, containing the 
activities na, are:

CD CD ti i
i

na
t( ) = ( )

=
∑

1
 (17)

where the vector is t = [t1, t2, ..., tna]. In order to determine an 
optimum duration of activities and the project realization phase, 
it is indispensable to calculate the smallest value of the total 
costs, expressed through the objective function (16), with the 
fulfilment of constraints from (2) to (10)., i.e.

z CU tpr= ( )min ,t  (18)

The objective function (18) and constraints (2) to (10) define 
the mathematical time-cost optimization model for the project 
realization phase.

In the real critical path diagram, the number of constraints is 
often very high. In case of the linear objective function, the 
problem can be solved using the Simplex method for linear 
programming, while in the case of quadratic functions, such 
as the objective function (18), the problem can be solved using 
the quadratic programming methods. However, in addition 
to real variables ti, these algorithms also require introduction 
of additional variables, and so their number in the simplex-
matrix becomes even greater, which is why these method can 
not be recommended. This is the reason why many authors 
apply acceptable computation methods that are mentioned in 
the first section of the paper. The optimization based on the 
particle swarm method, applied in this paper, is presented in 
the following section.

3.  Determination of optimum time and costs 
using particle swarm optimization

The particle swarm optimization method is an evolutive 
computation method based on populations [39]. It can be used 
for optimization of continuous objective functions with and 
without constraints. Together with the ant colony optimization 
method, bee colony optimization method, and stochastic 
diffusion search method, it belongs to the group of swarm 
intelligence methods. These methods are based on socio-
psychological principles. Swarm intelligence systems are made 
of populations composed of simple members (particles) which 
interact with one another, and also with their surroundings. 
They observe and understand their surroundings and can take 
actions that maximise the possibility of success. These systems 
include bee swarms, bird flocks, fish schools, animal herds, 
bacteria groups, etc. The method is inspired by the similarity of 
their behaviour to the socio-psychological behaviour of human 
beings when solving various problems. When decisions have 
to be made to solve a practical problem, the decision maker 
discusses the issue with other people, gathers information, 
advice, and opinion of others, and applies his/her knowledge 
and experience. The decision maker particularly takes into 
account his most successful solution to this or similar problem 
in the past, and the most successful solution obtained by other 
people from his close or wider surroundings, with whom he 
has exchanged opinions and whose experience he has applied. 
When looking for food or when migrating to other destinations, 
bird flocks, fish schools, or bee swarms adjust their physical 
movements and exhibit a sort of social behaviour. To overcome 
various obstacles and avoid dangerous situations, they use 
their senses to exchange information, and every member of 
the swarm acts in accordance with its position with regard to 
other members, using its previous "experience" and the most 
favourable instant position of a swarm member, or a member 
that leads the swarm. Unlike bee swarms or fish schools, 
groups of people use their cognitive and creative capabilities in 
their interactions with others.
The particle swarm optimization method "involves a very 
simple concept, and paradigms may be implemented in several 
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computer code lines. It requires simple mathematical operators, 
and is inexpensive with regard to memory and speed" [39]. This 
method for solving nonlinear programming or optimization 
problems, as will be seen below, is very simple from the 
mathematical and algorithmic standpoints, and it provides in 
many instances highly accurate results. That is why it presents 
some advantages for solving a greater number of problems 
when compared to some other more complex heuristic methods, 
such as the genetic algorithms, evolutive strategies, algorithm of 
simulated annealing, etc., and also when compared to traditional 
numerical methods based on the theory of mathematical 
programming. The main advantage of this method - compared 
to genetic algorithm method and other evolutive methods - is a 
simple implementation, as it involves only several parameters 
that have to be adjusted in an iterative optimization process [40].
This method simulates initial solutions using the Monte Carlo 
simulation, and these initial solutions are improved through 
simulations made during subsequent iterations, until an optimum 
solution is found. This is why it is ranked among stochastic and 
heuristic methods. 
In the scope of the time-cost optimization problem, it is necessary to 
determine an optimum duration of activity ti and project realization 
phase tpr, so as to obtain minimum values of the objective function 
z, which represents the total costs in the project realization phase, 
and which can be presented, due to (18), as follows:

z CU f t t t Rna
na= = ( ) = [ ] ∈min ( ) min , , ,..... ,t t t t1 2  (19)

provided that constraints from (2) to (10) are fulfilled. These 
constraints determine the set of allowable solutions, D. The 
optimization procedure is conducted iteratively.

Figure 3. Simulated initial solutions 

In the first iteration, which is called initialisation, the Monte Carlo 
method is used to simulate, in the set of allowable solutions 
D, the vectors tp

(1) that represent the rows of the matrix T(1) = 
[tp,i

(1)], i = 1, 2, ..., np  in the Euclidean space Rna (cf. Figure 3). They 
represent initial position vectors of the number np of swarm 
members located in the set D in which they move, and whose 
components are compliant with the constraint (2).

t TC TN TC rnd i n p n rndi p i i i a p, , .,,,, ; , ,.... ,1 1 2 1 2 0( ) = + ( ) ⋅ ( ) = = <- (( ) < 1 (20)

where (rnd) is the simulated random number of uniform 
distribution, na is the number of activities, while np is the number 
of swarm members. 

These expressions confirm fulfilment of the constraint (2) in the 
first iteration. The earliest EFi,p

(k)  and the latest LFi,p
(k) completion 

of activities Ai (i = 1,2,..,na), and duration of the project realization 
phase tpr

(k), will be determined for the simulated time tpr,p
(k) (p = 

1, 2, ..., np) in this and in the subsequent iterations k using the 
critical path method (CPM). This fulfils the remaining constraints, 
as the calculation of duration is based on formulas used in the 
critical path method (6), (7), and (8). Direct costs, indirect costs, 
and total costs, representing the objective functions fp

(1)  = f 
(tp

(1)), are determined according to formulas (13) to (17) for the 
obtained durations of the project realization phase tpr,p

(k) (p = 1, 
2, ..., np). Simulated vectors tp

(1) are analysed to select the one 
for which the objective function fp

(1) has the lowest value, and 
this vector represents the best global solution tg

(1) in the first 
iteration, where the following is valid

min f z fp g
1 1 1( ) ( ) ( )= = ( )t  (21)

In a subsequent iteration k = 2, 3, 4, ....., and for the know 
position vector tp

(k-1), the vector showing position of the swarm 
member tp

(k)  is determined (as shown in Figure 4) according to 
the following expression

t t vp
k

p
k

p
k

pk p n( ) −( ) −( )= + = =1 1 2 3 1 2; , ,...; , ,....  (22)
 

where vp
(k-1) is the change of the vector showing position of 

the member of the swarm p after iteration k-1. This vector is 
also called the speed vector and is calculated according to the 
following formula

v v t t t tp
k

p
k

l p
k

p
k

g
krnd−( ) −( ) −( ) −( ) −( )= + −



 ⋅ ( ) + −1 2

1
1 1

2
1ω φ φ, pp

k rnd rnd−( )



 ⋅ ( ) < <1 0 1;  (23)

where tl,p
(k-1) is the best position of the member (particle) of the 

swarm p that can be related to the smallest objective function 
in the previous iterations 1,2,…k-1. This vector or component 
is called the data component and it introduces in the calculation 
the information about the best position each swarm member 
assumed in the past. tg

(k-1) is the position vector of that member 
(particle) of the swarm p for which the objective function has 
the smallest value f(tp

(k-1)) in the iteration k-1. This vector is 
also called the social vector or social component, and it takes 
into consideration the best instant position of the said swarm 
member.
The factor w is the inertia factor [41] and its value is w ≤ 1. It 
is often assumed to be w = 0.9 and it influences reduction of 
the speed change vector during subsequent iterations. The 
computation with values 0.7 or 0.8 is recommended. It is also 
recommended to take at the beginning of the iterative process 
a higher inertia factor value so as to increase efficiency of the 
search for the global solution [33]. 
Factors j1 and j2 are called learning factors and they determine 
the relative influence of the data component about the best 
position of each particle p in the swarm tl,p

(k-1) and the so called 
social component tg

(k-1) on the position tp
(k) of the member of the 
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swarm p during the subsequent iteration k. These coefficients 
are j1 ≈ 2, j2 ≈ 2. 
Value (rnd) is the random number of uniform distribution, and 
every time a different value is simulated in the above expression. 
In order to prevent an excessively fast movement of some 
particles in the zone of allowable solutions, which could lead 
to divergence in the optimization process, it is recommended 
to limit the speed [42], so that the maximum absolute value of 
speed component in the iteration k is smaller than or equal to a 
specified maximum speed vmax, i.e.:

max ; , ,..... ; , ,...., maxv v p n kj p
k

p
( ) ≤ = =1 2 2 3  (24)

Figure 4.  Definition of new position vector tp(k) for a particle in the 
swarm p

In literature, some authors recommend that this value should 
amount to 10 percent of the maximum value dj

d t t j nj j j= − =max min ; , ,....1 2  (25)

The constriction factor K is introduced in order to limit the speed 
and prevent divergency or the so called process "explosion". This 
factor is calculated according to the following expression [43]

K =
− − −

= + ≥
2

2 4
4

2 1 2
φ φ φ

φ φ φ,        (26)

This factor influences reduction of the change of position, or 
speed, of swarm particles in the following iterations, and so it is 
calculated according to the following expression:

v v t t t tp
k

p
k

l p
k

p
k

g
kK rnd−( ) −( ) −( ) −( ) −( )= + −



 ⋅ ( ) + −1 2

1
1 1

2
1φ φ, pp

k rnd−( )



 ⋅ ( ){ }1  (27)

The vector tl,p
(k) that corresponds to the "best" minimum 

objective function value for a particle in the swarm p in all 
preceding iterations, including the iteration k, is calculated 
by comparing objective functions for that member in two 
neigbouring iterations k-1 and k, in the following way:

t t t tl p
k

l p
k

p
k

p
k

l p
k

l p
k

p
kf f f, , , ,

( ) −( ) ( ) −( ) ( ) ( )= > =1 1 za ,  za (( ) −( )< fp
k 1  (28)

p = 1, 2, ..., np, k = 2, 3, 4, ...

In the first iteration k = 1, we have tl,p
(k) = tg

(1) i vp
(1) = 0, p = 1,2,…,np .

According to expressions (26) and (27), parameters j1 i j2 
influence the speed vectors vp

(k,) i.e. the change of position of a 
member (particle) in the swarm p or, in other words, its trajectory 
of movement in the Euclidean space Rna. If these parameters 
are close to zero, the movement trajectory tends to exhibit 
smooth curved lines [39], because the changes in iterations are 
small. After several iterations, trajectories move toward best 
positions or solutions. The inertia factor and maximum values 
of parameters j1 i j2 are not independent [43], and the use of 
their pairs is recommended: w = 0.7, max j1=max j2 = 1.47 or w 
= 0.8, max j1 = max j2 = 1.62. 
Once the components ti,p

(k) (i = 1, 2, …, na) of the vector tp are 
determined, it is necessary to check whether they meet 
constraints(2). If i,p

(k) < TCi, then we have ti,p
(k) = TCi

 , and if ti,p
(k) > 

TNi, then we have ti,p
(k) = TNi . These durations of activities in 

iteration k are used to calculate, using the critical path method, 
the earliest and the latest completion of activities and duration 
of the project realization phase tpr,p

(k), as well as the direct and 
indirect costs, and the objective function for each swarm 
member and for each iteration k = 1,2,3,…

f f p np
k

p
k

p
( ) ( )= ( ) =t , , ,....1 2  (29)

An important constraint is not met if the calculated project 
realization time tpr,p

(k) for the particle p in the iteration k is greater 
than project realization time specified in the contract tug, i.e. tpr,p

(k) 
> tug (5). In this case, it should be specified for this particle p, i.e. 
for such project realization time, that the total costs have a very 
high value. In this way, this particle p is excluded from further 
procedure, as it can not fulfil the next condition for selection 
of the vector tg

(k). After that, the minimum of these values is 
defined in each iteration 

z f f kk
p
k

g
k( ) ( ) ( )= ( ) = ( ) =min , , ,....t t 1 2  (30)

as well as the vector tpr,p
(k) that corresponds to this iteration. 

The procedure is repeated until the absolute value of the 
difference between the minimum objective function values in 
two subsequent iterations becomes negligible.

z zk k( ) −( )− ≤1 δ  (31)

where d is a small number selected in advance, depending on 
the desired solution accuracy.

Figure 5. Optimum solution
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Figure 6. Process algorithm based on particle swarm optimization

Thus obtained solution for the duration of realization of activity 
top = [t1

op, t2
op, ..., tna

op] and for the project realization phases 
tpr

op, with the corresponding direct costs CD(tpr
op), indirect costs 

CI(tpr
op), and total costs CU(tpr

op), is accepted as an optimum 
solution. The position of swarm particles corresponding to an 
optimum solution is presented in Figure 5. The algorithm of the 
presented procedure is shown in Figure 6.
Based on this procedure, the authors of this paper developed an 
appropriate computer program called OPTCOST_PSW using the 
program system MATLAB. 

4. Pareto front: time – costs

If in the interval of the shortest and normal project realization 
time [TC,TN] the value tug is changed for the constraint (5) in 
such a way that it represents the shortest (minimum) time 
within which the project realization phase must be completed, 
and if the minimum total costs CU(tug) for the project realization 

phase are calculated for each such value using this optimization 
method, then we obtain the dependence function CUmin of tug = 
tmin, which is shown in form of curve in Figure 7. Points with the 
coordinates (tmin, CUmin) are shown in this curve.

Figure 7. Pareto front of non-dominant (efficient) solutions

If from the standpoint of multicriteria optimization the total costs 
CUmin are taken to be one criterion, and if the shortest project 
realization time tmin is taken to be the other criterion, then this 
minimum time – minimum costs curve constitutes the Pareto 
front for the interval [TC, TO], and this front is formed of non-
dominant (efficient) two-criteria optimization solutions. These 
solutions are characterized by the fact that total costs CUmin reduce 
with an increase in minimum time tmin and, vice versa, if the time 
tmin is reduced, the total minimum costs CUmin are increased. The 
curve points above the time interval [TO,TN] are not Pareto front 
points as the total costs CUmin increase with an increase in time 
tmin. This curve is important for decision makers, i.e. for the clients 
and contractors alike, as it can be used to monitor the change of 
costs over time during the project negotiation phase.

5. Implementation measures

An appropriate team must be formed for planning and checking 
realization of construction projects. This team must be formed 
of specialists who are familiar with planning techniques, but also 
with construction technologies and financial and organisational 
problems related to the realization of works. The team should 
make a realistic plan based on the critical path diagram showing 
realization of works, taking into account specified types of works, 
conditions under which such works will be realized, necessary 
and available human, financial and material resources, and time 
available for the realization of the project. Typical duration of 
activities and project realization time, including relevant direct 
and indirect costs, must be determined using an appropriate 
IT system, production standards related to the use of labour, 
material, mechanical plants and money, and experience in the 
realization of other projects. In addition to these input data, 
the information about correlation of activities should also be 
entered into the computer program. The processing of input 
data based on this method results in an optimum duration of 
activities and in an optimum project realization phase, with the 
corresponding minimum costs. These output results should 
however be analysed to assess their accuracy and applicability. 
In case some false or unrealistic results are noticed, the input 
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data must be verified, appropriate changes to such input results 
should be made, and new solutions should be obtained, which 
must once again be verified. It is recommended to vary input 
data for some activities depending on their costs and durations 
in some intervals, and to accept those times which have been 
found to be most suitable during processing or results. The total 
project realization costs do not greatly deviate from the minimum 
(optimum) costs in a wider time interval, which is very favourable 
for the project realization planning, as all times within this interval 
can be accepted as optimum times. The use of these optimization 
methods is recommended for the global time scheduling with a 
smaller number (up to one hundred) larger activities, based on 
which detailed plans can be elaborated.
The project activities and project duration information obtained 
in this way can also be used as input data for complex program 
packages, such as the MS PROJECT, PRIMAVERA, etc.

6. Example

The time schedule with 14 activities relating to the construction 
of a small structure (filling station) is shown in Figure 8 [44]. The 
optimization was made using the particle swarm method presented 
in this paper. The list of activities is given in Table 1, and typical 
duration of activities and relevant costs are presented in Table 2.

Figure 8. Critical path diagram

Table 1. List of activities

Table 2. Typical time – cost predictions for activities

Based on CPM the following information was obtained for the 
above input data: shortest time TC = 23 days, conventional time 
TE = 37 days, and normal time TN = 59 days, for the completion 
of the project. Indirect costs for these construction times 
amount to: CIC = 15.000 €, CIE = 24.500 € and CIN=56.500€. 
The completion time specified in the contract is tug = 55 days. 
The following results were obtained using the program 
COSTOPT_PSW:
 - optimum duration of activities in days

 top = [8, 5, 6, 12, 9, 3, 5, 7,9, 4, 7, 5, 2, 1]

 - optimum earliest activity completion times
 EFop = [ 8,13, 14, 26, 23, 29, 31, 36, 40, 40, 36, 45, 47, 48]

 - optimum latest activity completion times
 LFop = [8, 14, 14, 26, 29 ,29, 31, 36, 40, 40, 45, 45, 47, 48]

 - optimum time for realization of project tpr
op = 48 days

 - all activities are on critical paths, except for the activities A2, 
A5  and A11

 - number of swarm particles np = 50, number of iterations nit 
= 14

 - optimum project realization costs are:
 - direct costs CDop = 81.847 EUR, 
 - indirect costs CIop = 37.892 EUR,
 - total costs CUop =119.739 EUR. 

The same results were also obtained using the genetic algorithm 
method.
Total minimum construction costs, representing Pareto front 
points of efficient solutions are presented in Table 3 for some 
typical values of minimum (contract-specified) construction 
times (Figure 7).

Activity Ai Designation of activity

1 Site preparation activities

2 Supply of materials

3 Earthworks

4 Rough construction works

5 Supply of equipment (tanks and filling pumps)

6 Road bed construction for access road

7 Prefabricated works

8 Excavation work for tanks

9 Tank covering works

10 Masonry works for tanks

11 Asphalt pavement for access road

12 Assembly of pumps and tanks

13 Finishing works

14 Final inspection and initial operation

Ai
TCi

[days]
TEi

[days]
TNi

[days]
CDCi

[EUR]
CDEi

[EUR]
CDNi

[EUR]

1 4 6 9 18,000 12,500 8,000

2 2 3 5 10,000 6,400 4,500

3 2 4 6 12,600 8,600 5,000

4 7 10 15 30,000 20,000 14,000

5 4 6 9 18,000 12,000 8,000

6 1 2 3 6,200 4,000 2,000

7 2 3 5 10,800 6,800 4,000

8 2 4 7 14,000 8,000 4,000

9 4 6 9 18,200 13,000 8,700

10 2 3 5 11,000 6,400 4,000

11 3 5 7 14,300 10,000 6,100

12 2 4 7 8,400 8,400 4,800

13 1 2 4 2,000 2,000 1,500

14 1 2 3 1,000 1,000 500
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Table 3. Pareto front points

The last point (59;131.600) is not optimal in relation to Pareto 
front.

The authors tested the optimization method and computer 
program presented in this paper on two additional time-cost 
optimization examples. In these examples, the optimization 
was made using the Fondahl heuristic method [38], i.e. the 
genetic algorithm method [25]. In both tested cases, the results 
obtained using the particle swarm method correspond well with 
the results obtained in [25, 38] for similar time and cost input 
data.

7. Conclusion

The particle swarm optimization method can successfully be used 
for optimising realization of construction projects. The authors 
have adopted this method for solving these problems, taking into 
account project costs, activity durations, and activity correlations 
in the critical path diagram. They also developed an appropriate 
computer program. Nonlinear dependence between the costs and 
project realization time and project activities, as used in this paper, 
provides results that are much more realistic when compared to 
linear dependence, which was used in initial phases of development 
and application of the time and cost project optimization methods. 
The proposed procedure, considering its simplicity and level of 
accuracy, provides good results and presents several advantages 
compared to methods based on the use of simplex algorithms 
for linear programming, and other traditional mathematical 
programming methods. This method also presents some 
advantages over evolutive methods: genetic methods, algorithms, 
evolutive strategies and other mathematical programming 
methods, as it enables easier elaboration of computer programs 
while providing sufficiently accurate results. The use of this method 
is recommended for optimization of global critical path diagrams 
for projects with a smaller number of project-significant activities. 
Using their computer programs, the authors compared, using 
literature examples and their own examples, the results obtained 
by the method presented in this paper, with genetic algorithms and 
heuristic methods presented by Fondahl and Trbojević, and have 
obtained similar highly accurate results.

tmin [days] CUmin  [EUR]

23 184.000

30 150.910

35 136.009

37 129.313

45 120.769

48 119.739

59 131.600
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